Request a Free Counselling Session from our Expert Mentor

NCERT Solution for Class 12 Mathematics Chapter 11, “Three Dimensional Geometry,” is an important study material designed to help students understand the fundamental concepts and principles of three-dimensional geometry. Swastik Classes, a leading coaching institute, has developed comprehensive NCERT solutions that provide step-by-step explanations and solved examples to help students develop a deeper understanding of the subject. The chapter covers topics such as direction cosines and direction ratios of a line, equation of a plane, angle between two lines and planes, and distance between a point and a plane. With the help of Swastik Classes’ NCERT solutions, students can improve their problem-solving skills and gain the confidence to tackle complex three-dimensional geometry problems. These solutions are also useful for students who are preparing for competitive exams like JEE, NEET, and other entrance exams. Overall, Swastik Classes’ NCERT Solution for Class 12 Mathematics Chapter 11 is an essential resource for students who want to excel in mathematics and build a strong foundation in three-dimensional geometry.

Download PDF of NCERT Solutions for Class 12 Mathematics Chapter 11 3-D Geometry

Answers of Mathematics NCERT solutions for class 12 Chapter 11 3-D Geometry

Chapter 11

3-D Geometry

Exercise 11.1

Question 1:

If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.

Answer

Let direction cosines of the line be l, m, and n.
yq91 wEXKQ7oRuJ52C5Sg0Pmvpx

Therefore, the direction cosines of the line are

Question 2:

Find the direction cosines of a line which makes equal angles with the coordinate axes. 

Answer

Let the direction cosines of the line make an angle α with each of the coordinate axes.

∴ l = cos α, m = cos α, n = cos αX9aIRs7gjOPapG

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes, are

Question 3:

If a line has the direction ratios −18, 12, −4, then what are its direction cosines? 

Answer

If a line has direction ratios of −18, 12, and −4, then its direction cosines are
w7XhW4ome780x9U eF7lMpLHrIzhvJd Augcjq2JyGcsKYmksqy X rOEh35yXKYnZCNptjdlmXJbjLlJIBG9RD nYUovG561LyKrz6bssKfZWv0BlcPFg5bmhQ5b YInaqTQnM

Thus, the direction cosines are .

Question 4:

Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear. 

Answer

The given points are A (2, 3, 4), B (− 1, − 2, 1), and C (5, 8, 7).

It is known that the direction ratios of line joining the points, (x1, y1, z1) and (x2, y2, z2), are given by, x2 − x1, y2 − y1, and z2 − z1.

The direction ratios of AB are (−1 − 2), (−2 − 3), and (1 − 4) i.e., −3, −5, and −3.

The direction ratios of BC are (5 − (− 1)), (8 − (− 2)), and (7 − 1) i.e., 6, 10, and 6. It can be seen that the direction ratios of BC are −2 times that of AB i.e., they are proportional.

Therefore, AB is parallel to BC. Since point B is common to both AB and BC, points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, − 4), (− 1, 1, 2) and (− 5, − 5, − 2)

Answer

The vertices of OABC are A (3, 5, −4), B (−1, 1, 2), and C (−5, −5, −2).
H4KWUQ0M5fk 7MsZ8p QgUWZx0lAbFJDRaMfWpJ4WORQnmlTLcZ9bzK5kCXruxrYRiAPMpRbnXYiDC05FwViEALtcvU7r4suXSNoyZbWJSD0c7vE02NCXgQk 4XCFYllNzTMQl8

The direction ratios of side AB are (−1 − 3), (1 − 5), and (2 − (−4)) i.e., −4, −4, and 6.
jUzANvU3V6AYYL4EcjI FfzJVPwLmIAp6uw KbEkK ZWvwX XKU4ZetLj4 2xCO19WhBcogUU2dn5HmQWAUmg4hMUz

Therefore, the direction cosines of AB are
AegyzqC JzWCn33iy2OFeVVfeW sF8fJfymzKt szDUhHn4HJJSUGYdSVHAyPk 1Qpw1xY1rGrSDSn1ri74htwA2fRc5MhvzaVgYO76fQGGcI7CBP t8O 9BVaqZ4XWmbGF IYM

The direction ratios of BC are (−5 − (−1)), (−5 − 1), and (−2 − 2) i.e., −4, −6, and −4.

Therefore, the direction cosines of BC are

i.e.,

The direction ratios of CA are (−5 − 3), (−5 − 5), and (−2 − (−4)) i.e., −8, −10, and 2. Therefore, the direction cosines of AC are
P3yy4WmrWEXDoGW2DZKUQUPbzQw8YqJ JLIO1Mjo TVGlOeDxZ7ojHnToFrWGgfrNsqOMawXCpp53DSmZPORmpOdXsrZIe08Ldv1KX pjny

i.e.,

Exercise 11.2

Question 1:sKkYBrcTQyXV4 nOInJyAydCylggFQbBYq rJqoOSFHJkf7LsP1Xe8VRFRBBEqnTbiSQ8J9WDdiFj4WV2G0OL7kcpLjUY 4y6Qk07prQWaTIUlrHuY OXRiHtPFWFpdDwqv8p6U

Show that the three lines with direction cosines

are mutually perpendicular.

Answer

Two lines with direction cosines, l1, m1, n1 and l2, m2, n2, are perpendicular to each other, if l1l2 + m1m2 + n1n2 = 0

For the lines with direction cosines,   and  , weobtain
eQtCSoJcNNRdBnK4 KDEikV42qK gyORIPlX6oCXEDvP1MVdKGyPNJt2nP27Skde5RCBtlgmCrL4kfSSu1Lt55VfiMjBipagzwcgk4ZbYv3rMnobWvoVj E0LCUBghggMX5DN0s

Therefore, the lines are perpendicular.

For the lines with direction cosines, and  , weobtain

Therefore, the lines are perpendicular.

For the lines with direction cosines,           and           , weobtainnceClsBLyCKxGk5OKFRGKU73cWcI5NRM4hskWelwgZu3ZQovo6xH8kKgPOAmUdN0682kVIImshQRUaZvG1B3gBoqGpcVytfnuImdfhF2hcxiO6wIMFtlRhr9tjNQUJ9l U5EbksK6jc4l1agBWx2ubNKcr5AARt uBcMTFcp4alU1RT5s3 Cf2E nc9fA8Mule C0I89mH1EXpzK DHmW EgyIDfIA7mUBcgVNBfPIMycgTs83

PNCbID7096OAJVVCAWvD26RpMO77Edqyr5LNH jse6IkFKL3ghcG Z vn0sM3pjak7s nvHMVaQOThguwx

Therefore, the lines are perpendicular.

Thus, all the lines are mutually perpendicular.

Question 2:

Show that the line through the points (1, −1, 2) (3, 4, −2) is perpendicular to the linethrough the points (0, 3, 2) and (3, 5, 6). 

Answer

Let AB be the line joining the points, (1, −1, 2) and (3, 4, − 2), and CD be the line joining the points, (0, 3, 2) and (3, 5, 6).

The direction ratios, a1, b1, c1, of AB are (3 − 1), (4 − (−1)), and (−2 − 2) i.e., 2, 5, and

−4.

The direction ratios, a2, b2, c2, of CD are (3 − 0), (5 − 3), and (6 −2) i.e., 3, 2, and 4.

AB and CD will be perpendicular to each other, if a1a2 + b1b2+ c1c2 = 0

a1a2 + b1b2+ c1c2 = 2 × 3 + 5 × 2 + (− 4) × 4

= 6 + 10 − 16

= 0

Therefore, AB and CD are perpendicular to each other.

Question 3:

Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (−1, −2, 1), (1, 2, 5).

Answer

Let AB be the line through the points, (4, 7, 8) and (2, 3, 4), and CD be the line through the points, (−1, −2, 1) and (1, 2, 5).

The directions ratios, a1, b1, c1, of AB are (2 − 4), (3 − 7), and (4 − 8) i.e., −2, −4, and−4.

The direction ratios, a2, b2, c2, of CD are (1 − (−1)), (2 − (−2)), and (5 − 1) i.e., 2, 4, and 4.

KvExCOklCpby7q qmDO14aAlPJBojt1Kx PWnv0yXy4z5BcFg 9k2d

AB will be parallel to CD, if
LA9gVP 5anwr2WldPoSQFjgSUZm6FmyqiQbvSZ33b RNv1LBNVSbjiIM7QgqbA8eMXlC7Nv4 3CxXa8aIuR94jkLlXX37jzp vSqCt3c8d9aeiThvpfR WNQbg09WUc8DQ2OZJ0jLadFlOlqwhLgfub6tXdoCFnnUmpoU5ytPWa2fxz0VFY7cfSwjYvi0 NzINc0z0zE ZmzPEx 3 0A41JgGF2AtYOYHUzCn4yBCUopYQQXHicRTzE0p5Y3qutVSAPfudwcv5d6K0N xFi9kO7uwISDFbT3oyWn xYPhoWCZ0wTmonnw6UkB W170mIadvlrTn qDpCLGhN1 uia67Z4Apo zPG0iS5rAN7Dh Etmozk3UbcZy6ukY5HFBR2FcnSXX97rUvG4VzmWwGw

Thus, AB is parallel to CD.

Question 4:

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector 54CwmSBpGPTIonRp6rbgOaTFqX3fPGcXH.

Answer

It is  given that the line passes through the point A (1,2,3). Therefore, the position vector through A is LqUMlnnNwepoCy 5o3nIUcgvHW ThOoaflyR7uB0RuqQTR1NLEImAlRgOQZhU8A98aIH9rp4dbQkDhzgcEUT50wrddEwbPt6bZUHdZm5a5W5LsjzU3uIP0aZO1FyWq9FfyHQPqU

It is known  that the line which passes through point A and parallel to 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfA is given by                  

WB qhRO9NHB7OjOFvch9cox2rQ3qD q4hwe4ahfzge3ZwseCI4qXclAqCNLdEdodYUdRdfyoydhf4qV4KSYrfCiGRDLMiL38SsTkQodHn83eKe1fBUOgMzkcah rPY0offaEVf0is a constant.

un0ko70YqAk3FZ6NcJglJVxk9snjI0Ht

This is the required equation of the line.

Question 5:

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector oPaDfc oyoI6fwLJHP2lwWPcewZWLKnvl5G7ytz Co3l8aXPLyuMjUYda1BqYfBXgNj1LU4NCulac6jTTy0r6CQIm6Clg24X7LxiC 5jrmWcR a9Ont B0eANKDXLoDktu4kPOU and is in the direction jv5OJLvhmx3RAbhlZG dTzeB0pQvc3CO XP8W7FFOE M 1raXFfhUAXiuN5R0nI7ggjI9Ha0ACE0va79 d1mggDRzo3Z

Answer

It is given that the line passes through the point with position vector

rm2cyd6ach wAzFr2LALYUQ 3f32yEpbkspkCH5tGZHLk7MvnD6qZiH Bw0Gy2ojEe0D55xsGNRby62CfXiLj0 rdd06Lh7eXqfqonTHdiJ0ZumCeqnEfJY7sI 2cdG737W4YPU

It is known that aline through a point with position vector arouekxxsdqgK bLNyGtlbKMdPQPETYH6B3f4XwXLnLJiyYI cgliStlW7xIvArXPwdSuNr26IZ2xvOvmGgE46 rrucecn rwypcwONMoGNnKkW8ejzSyskg EWEdDGmN8VPnZY and parallel to 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAis given by the equation, Tmri P2WafZDRMqXwv49HR2tNhenrBJ2jnLE3PvEI2IDxBwzSWGUsvofMRrkpvkAMfhJHtbt

This is the required equation of the line in vector form.
B DRyXcl87boKSl81X5OGe9t ZRRKZVvh3zaRtQangyWqOqIy5xNWbfQuAiMLS0LmoB FIUUi9Gz0sy3IIEeW94ZJnUp7 DEYKHmK0 90RyErmJuS z6Ucocdy07dxmMOM PHsM1cqozOEYPmOH41nOUdt6n0
QD6fu4oXH82CA5wKbVG2J9Jj657O5cgXgu5cgFEFLqeIaD0fHVvKwsrTT5Zck jLgB v TNW u 9zUVMAwIfeYpIr2r6bZ3DHnwn44l6sgf23DIoBwu9MTk 3D0VGIbnBijLGvc

Eliminating λ, we obtain the Cartesian form equation as
bVFxPVarHx1tvpLKlFeHatl3lp4EVG4kARpaf1j oDARIRfkZqz tiAlI1Ad1M6kh wEmf0Ar9XE 0lM6Pofuz98mY

This is the required equation of the given line in Cartesian form.

Question 6:

Find the Cartesian equation of the line which passes through the point

(−2, 4, −5) and parallel to the line given by

Answer

It is given that the line passes through the point (−2, 4, −5) and is parallel to
RkfPddb3QxHvsxN4RVwI8bWxuk3FbzFrjwMg3QEdTN QRWGL721y8pE4OWItzSKTEF1aSULrib iF2AbLLxPgaiq3c2LnxyhBdIiu09UePvd37fipbp

The direction ratios of the line, , are 3, 5, and 6. The required line is parallel to

Therefore, its direction ratios are 3k, 5k, and 6k, where k ≠ 0

It is known that the equation of the line through the point (x1, y1, z1) and with direction ratios, a, b, c, is given bytmHWqUQpMyI2VDga6hiKD9eR49A QJnR4dmnXU

Therefore the equation of the required line is
WGFeX

Question 7:

The Cartesian equation of a line is . Write its vector form. 

Answer

The Cartesian equation of the line is
r2iJx9 NVtzFVbsl0fnEYc gsXGlFoN A J UCkCK0bZVpaB5U1Z3bW8Ty3zHyKzwOypeoH3RSqJAuD3Rlib7oPbFwteeMQLiv 1uS Xlr8tZRs5qdJUKUkehA2uz59o2nzS1rU

The given line passes through the point (5, −4, 6). The position vector of this point is
DSjkE9CvvAcGtpvHJ6ck98xitn2m2WZipoc1gvRa4AN0mwRO9C1CXmgLGX5Nj2VLF947xoW4MqJQ4xA456 jjej7OL gqWLAdpEk Cy1SAyDdEH1g2RJPc3JwXLVurb58BfRJ6o

Also, the direction ratios of the given line are 3, 7, and 2.

This means that the line is in the direction of vector,

It is known that the line through position vector and in the direction of the vector6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAis given by the equation, IKXi7JILhN2 kOZ TUC9uSJQO nD33PaqVaw6ltCZxcC9tDnDcx5AkPtGegSuo KzDDq0w7tIGoj4PRwkjmCSJ3tRUfk NBqDJ6L4XxcRSuV4qiiv7ZDHBdrndKWk 9BQ9vI04arouekxxsdqgK bLNyGtlbKMdPQPETYH6B3f4XwXLnLJiyYI cgliStlW7xIvArXPwdSuNr26IZ2xvOvmGgE46 rrucecn rwypcwONMoGNnKkW8ejzSyskg EWEdDGmN8VPnZY
lUSm5P

This is the required equation of the given line in vector form.

Question 8:

Find the vector and the Cartesian equations of the lines that pass through the origin and (5, −2, 3).

Answer

The required line passes through the origin. Therefore, its position vector is given by,
xSaR3XJ5XyutV3n67UNBFYR5hUqbXvMgCDcedR9Wd9fwNdkgVb4gLac9zonAzK WuUAwq2d Ak55nOX6pURcQerrpXba8DAUka6JG33FIvelLy TICQoXy37WlnA1YUSbCnsvK8

The direction ratios of the line through origin and (5, −2, 3) are (5 − 0) = 5, (−2 − 0) = −2, (3 − 0) = 3

The line is parallel to the vector given by the equation,

The equation of the line in vector form through a point with position vector arouekxxsdqgK bLNyGtlbKMdPQPETYH6B3f4XwXLnLJiyYI cgliStlW7xIvArXPwdSuNr26IZ2xvOvmGgE46 rrucecn rwypcwONMoGNnKkW8ejzSyskg EWEdDGmN8VPnZYand parallel to 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAis, hLMr2Ros jf DzAA2SVZDVsiYkpRkwXjgTaSCLFbXeeEHwnvH1ZyCZVDPPc9QLwToZALXpKhrUQlnoUv CM4PveN3tCkz6B8b

The equation of the line through the point (x1,y1,z1)and direction ratios a, b, c is given by,
APPUpjKA5wFvTexuLba2wz2IBRWfguAKOLSxio6qFYK4oRiHvHXKfPZB1iDYCYnAeRUsYH Rrv2KVt67waVuPyaDBIfN8AXmYxLK7CUtN Ke5F3JBfzPiTkJT3CAaw 3q45tHj4

Therefore, the equation of the required line in the Cartesian form is
0RpKrfNvFOeovZDMFfnghvbjD5s0Nq8mBcgiLP6u8fHBh dclRGa3v6JUun 82zQy857RUZwdUZY8D9Um3u T45 frpEZrPTXjC5 NteJX2GC7qPiVqI9gUufGVwpopVeFJ7A

Question 9:

Find the vector and the Cartesian equations of the line that passes through the points (3,−2, −5), (3, −2, 6).

Answer

Let the line passing through the points, P (3, −2, −5) and Q (3, −2, 6), be PQ. Since PQ passes through P (3, −2, −5), its position vector is given by,N5daEEsdGo40SBkYhsp yDSnLU0CR210Ixm lWQpROiyqd7iBdAfhvnrb 23e18x x3nO2Bjj K7k1Pn mrs6XZIK7fFs5JQSuEFsXI6W

The direction ratios of PQ are given by, (3 − 3) = 0, (−2 + 2) = 0, (6 + 5) = 11

The equation of the vector in the direction of PQ is
3Kk12cM0DaKZ5gpDi JfNiqIG6IgbFyqiL4Cfq b TCRKhgfCS1UjRShYQaf07ryuVpAtB7scmYd3z 6oN3p9BOCWs0kG2JvyUmphglo4b LflXbrrFAt GvdzB2i VYmse4BM4

The equation of PQ in vector form is given by, hLMr2Ros jf DzAA2SVZDVsiYkpRkwXjgTaSCLFbXeeEHwnvH1ZyCZVDPPc9QLwToZALXpKhrUQlnoUv CM4PveN3tCkz6B8bTKFkKH3vAfIaSSSNAOqiFfO1c9vl mHD3Wjv5KTvxekeOp1azWErM IxN5u2cZWXR0lbThQRj9JUHnTIGEpIEvHytbe22 1Bvhd dQUjq0jo5RHTGO4raVC4X Sgs9x

The equation of PQ in Cartesian form istmHWqUQpMyI2VDga6hiKD9eR49A QJnR4dmnXU

i.et6jylNGW XAAkQ9xgb5xZ3iYkA4PcJ1OwS6W5ndLOwxlx gmjKOCihrABFvGKaVgflkxSj2JKLdlfLDCxaFPb8pRqqIPsjIDwaKOClBuVEVnKE Yu9TC6yZtO059lg3WKhv98Kk

Question 10:

Find the angle between the following pairs of lines:

(i)

57bC1WVziSeBDocoCg5Kj 2crpF2ihVDf2jCoK33SqAxYu FHaMaiJ9y P1gvv9JY0HbM471 WcRA0QyoiRaxEbQml6Czo4nSqWBwnfUWnACE7GDOjYHl9bApTAatb9MXJ3h ZM

(ii) and

Answer

Let Q be the angle between the given lines.koZvUVyFi2201FpV0QzwvMQlU6c2EHcZSmtLUJnCdI4v 67WdhA GKBl439GlJgNFPLr9uPQScZxQBqUJCJx BIlYNNv2NbzKE02pLu76pViNPn JOjrpwKrUuyDBjycSw1 8AM

The angle between the given pairs of lines is given by,

The given lines are parallel to the vectors, and , respectively.rMI5Sb4 DN6TzYs dlS2ZFb223kA59KS9uIKsAT R9z7ecEYi BsSOH4cn7s0qUyVAdLKtuq8HokemAczVQ9fXC1bTSE CE

The given lines are parallel to the vectors, and , respectively.0VFUBbCI1XwX06rHJIHcBPWzQEqWz3wpRO0HINnF2oNjAVpV8VffLx0KmGs7RE2LrPwrEcaPYPaNpCkxTD7RLfYU EeIeGyL1BBMfq0yhF7k5kNDGK2D5POL78H9dbAlEmwQNAo
No B mQDRP8OqEdqbLtNmlTubUnNed41LrhvZ8VwDRPyMRg6Hl e 9h7sJgWtbHg0MySDw3JF2hatJoKDWpIPQkvnHWAD5B3ATnTFOJeTF 9EcQtCwz9wAJpLolgj94H0YycQ0

*Question 11:

Find the angle between the following pairs of lines:

(i)

(ii)

Answer

Let and be the vectors parallel to the pair of lines,

, respectively. and

The angle, Q, between the given pair of lines is given by the relation,
8XWB48WZxZjYRbJprVp q yLe93rWDcCF8bcEVqFUpDEZily8e3YZ5AqjQa3R4nK5szV x0dV
H8VwstSoU0GvXEKVxYxTbB HUDDls3n6RFEPS4Hm1wAM42E4mgbJtkzChPaeaugHSWZqW3p8RdD zj

(ii) Let be the vectors parallel to the given pair of lines, and

, respectively.

XjOojrQX7zVZSneQGA1mW1hKAUJFG6UtTloM1UUZR7yzj9BnJu6GurFnXKpX5o6oMMH6iikpKJCqUbHdp1AJ3t1arL1FXQFrIoIw1RzFMNinRa bXQTY Q bYEv0Oip0kIA4Agw

If Q is the angle between the given pair of lines, then

koZvUVyFi2201FpV0QzwvMQlU6c2EHcZSmtLUJnCdI4v 67WdhA GKBl439GlJgNFPLr9uPQScZxQBqUJCJx BIlYNNv2NbzKE02pLu76pViNPn JOjrpwKrUuyDBjycSw1 8AM

*Question 12:

Find the values of p so the line and are at right angles.

AnswerD4tSwGRnG4ZUhbegA9VFrJIyuYG2tarZ1tqERaCig3NrtqolLhqb3Vfk6ed6Hlgu iHgNG1eNp2uinUIer021Iz45karuWZf4Bq7gNzC uVW PVmB0pEzd8zbw3m0hFPCEgYZdc

The given equations can be written in the standard form as
5c05ErtZgSm9OFVSsWy 5tC

and

The direction ratios of the lines are −3, , 2 and  respectively.

Two lines with direction ratios, a1, b1, c1 and a2, b2, c2, are perpendicular to each other, if

a1a2 + b1 b2 + c1c2 =0

qppqqH3nnYP2JI5EtSL83PHdFadfE0l5CfUZ rC URqdSFNuWfHSBc8tLjBzulP

5Ir RklcDIqYPY9W9uizN66d2hTrPDz9 X7q5Tss58VYRTzJPn1P9S4LxUpShMrL46NMxY84n41AJ4TOLWK2TM9ivJtbYgYJ1l8NgEPp95GstFOaf

Thus, the value of p is .

*Question 13:

Show that the lines and are perpendicular to each other. 

Answer

The equations of the given lines are and 

The direction ratios of the given lines are 7, −5, 1 and 1, 2, 3 respectively.

Two lines with direction ratios, a1, b1, c1 and a2, b2, c2, are perpendicular to each other, if

a1a2 + b1 b2 + c1c2 = 0

∴ 7 × 1 + (−5) × 2 + 1 × 3

= 7 − 10 + 3

= 0

Therefore, the given lines are perpendicular to each other.

*Question 14:

Find the shortest distance between the lines
rVBOv6eRcmy71E5FDom7vjAc yhfERXo4BOzdKk2YpusMq5A9wwcV5gAqGo28crQobQfpmurZmHu572PkleYYl0cA27MUthlUp2o3sFrqJOtyQ0Be1Q8DVnceEQvFDbp11hbMyU

Answer

The equations of the given lines are

It is known that the shortest distance between the lines, and is given by,J Vfc d rBrIBXYIP27YDzgQmqXAGEhdNYDKoky 4pPjqU6t2Lv2wO3Ba0VZ3ZdUzu5ov 56dUWtJFZbitICQ10RhsOr5tL1LsKUGD8cJjyiEOe W1vj P93P3RbQI8 gr 7NEM

Comparing the given equations, we obtainu6jVaOYOnzvMWYURhCdD5MaXdZijWjYleZGLM 6piCy YHwE sJh6hLwWQ aKTIWEa 3opxpGNBSvDALIVKsJgMqoWp pIFF7yiLE6RJpH593p6HsJG 3bs7nsGXS9oMtFrZahw
APsn9usZGgkqqWKoZlL3a

Substituting all the values in equation (1), we obtain

tNtYQ3dUU3abrnqqjeNvXldxhgCjHaq uXsKOT16MuuL6euyOj4DiACURd6jxweyxZ 7YhgUoC5DB 4oYd3NI e2jdBnheEhcsoVxz SyiD9BYJese7BoW3 gTzi8CbMQF9k I
QhovKXHPg MYsr NpTQAccyPWkD1h4oDi9t10fhszUyF1 Vc e8s09f4vXOkO9bXOgY2F4f9I6u4ap

Therefore, the shortest distance between the two lines is         units

*Question 15:

Find the shortest distance between the lines  and

Answer

The given lines are   and It is known that the shortest distance between the two lines,

kSv3f7cvHjItf3x105N2XbmDeKtJ1MLot5mRKmtGg2woIyyZJubtHJmJCs mr4XsTsVau BcPwp5dGnSfWMXj layv55E42sO 0SV4f CCN4EXlQoiuBsz9a8y3FvUJwCaG1XQM

9EOBYJtqCw eTdcn6k8uNM38xnwcaTvuiZyZN9zXuXrpmxzwSJYJFea0tdXZ2AURdlq1OkWO64Uzec3traVcvJIye4oS0Y uggcSGFyDIYssMGl FDtBFRTY8mLWWDPgXfpuLs

Comparing the given equations, we obtain

XXY4tOz5VggWy0e718yI NGieQ64wX9hko8AcDO pBfOKCvy6y9jD0lxA2XkG7ycsiYkhud j8PRuMBO0KVzErZsFllCEwpDX9kAhNzi J VWbyOrjCfqfi2wDLSubstituting all the values in equation (1), we obtain
XSD7ubIa1 Ru yBQ204s0nZCAOqXtTaG52Q4hj058KHZqeIrPKcoVPP9QakzY7xqbrMqrVE0lc20rIGizBimdTDRlt1 OUE 0KLl2ZF1co5BZO3l1a0vbZGO5GBSpyi1sukSISI

Since distance is always non-negative, the distance between the given lines is MTOpxiy6MeAfi7FZFxMzKK 1KzGzidjRe2jfYN2VNg units.

*Question 16:

Find the shortest distance between the lines whose vector equations are
Cuo0 Wc0I2J71iFMVgGmvNk3m2GARvVu0vqa gpRY0pWIpXucQBfDdRjre8IPJpdfSe4TQfsdst GEu

Answer

The given lines are and

It is known that the shortest distance between the lines, and , is given by,

J Vfc d rBrIBXYIP27YDzgQmqXAGEhdNYDKoky 4pPjqU6t2Lv2wO3Ba0VZ3ZdUzu5ov 56dUWtJFZbitICQ10RhsOr5tL1LsKUGD8cJjyiEOe W1vj P93P3RbQI8 gr 7NEM

Comparing the given equations with and , we obtainoosbagAVIplegU8Asa3H12PmWLCAKP5B1tbG37myohwoCUnVifR1yU1eEeQeCHHSZn335cQNQPLwjnZOzaKXiML1BptbskBHq FRm3jbRMrn60aQnDS1QtFCK6mjH9BNcPVf5Xv8gsnFRppJYNhHkXpqL0U9H8yXLN1cDdC Bde3HFhwZT0lp4 ZH401n4lWwPNfifWwzsy0hjz 62VvH20c8dgHIxs69RXwhHoCYN 1bk
gO CgQxcG1Wl5mngRkV7WMy5Cs3YsSF9vgnf nJE lFIckg SD4i rVNU8wcAyGr1OkRVUINWvDiLKe5RQBL5zj6p2PWWV5i6PzoVZnNPKRsvihBMm2Ey4tk8ruZZjc8TNyFWQs

Substituting all the values in equation (1), we obtain
jCbzAUbpMr2iskgbqrLj3CY2d 0qkzroHDbzX57u8BonT4FVQV0LohJoF91MQ7e9aM8DzO6ESBNB3h3RokRSbQLyp 5LQJlcdCGnyUsoIs6 hw2SP8DhwIxVBJAo0x6U QiF2A4

Therefore, the shortest distance between the two given lines is units.

*Question 17:

Find the shortest distance between the lines whose vector equations are
L XrQr8VyIVoCbDBvAW Dew nZVkq2PHC Rd eN21t0 Fl9vmkR5pZ1cdRPBaS1h2ycivxOd5sP3zhHxhtnexpILv2EhSL5hGUok4 NVFy FlzzuB6g8WzM m7hV3 9AESWaTRQ

Answer

The given lines are

99gi12CleRGsd3JDC15WV1i9SfS0zRIqDBK1t52p0Js3x GMioiOL6xKFJ6ozDYgVEFmdcaABVKW4LeyELwuvCEjK1pJiAHTwfZaMDQidtQuzSQv9Np d Co2DpdVrX67empMtY

PuecWRoE0966at3tEbvGd46ATI7vqvha5DDCevZ9ghy

It is known that the shortest distance between the lines,   and, is given by,

For the given equations,
Ovldxm1pIAKZiT9yLj zNUy0d453C5Vibat HCDaLADy7iMutk9LZexvn3yTXexZp4uSzoJpFRBJ06Kmc3TVlQAK9ef3k9YTL0ygcu J3UIScImy2US RZnH0LldUONTMovSmTIoIzyTYgUVApq1c2QP8zGLWNYAMDqL0ornBZm D 2PjTmdssJOGU05XZbEpKhRHGDq7oZJmb46TBP Qpydn4BLAlrjRoUjpOEIm5YQZ5gdRPDzbEki4ysh2Zeg0iNOLK5L qXjZYgRRVKamBdNnR5fojniKV6iAcVvWzPKMcnNYrv1l7zahm7U7 5cdxAtYgBcSwl3ZF4cXbh048sBGjbwqR Ke6JdOR1OK6lWMbq8K58De8AzTjMvkdC6C23CiodRC3GlciqGkQWwac6o8f7inZcag4oCps7AukF6WmYxLoq2bHN6JGhpLgigUgQ0 7VuXa9Tw3t w0bwLcCT 7OPjaCjJntnB oayeWo8QeT05n 98G rmGuOCQrKDp0cK6GVG3Vwzo7p GQ1WY QYSOVYoFqb uNZuOf266 PgEneUlC8Nxpp

Substituting all the values in equation (3), we obtain
yrJ Wdd0yI0MvnBl mBvAM4etEfQ8Qaqy9 yZn BISYmlsz vbBXCrFA53iwDnklaen0VmoJkIcnKR r6txyq5ljzUi8ZY3K1cOp YTMeB5o spZyS Zd 78NC5PsqBgcDprUXk

Therefore, the shortest distance between the lines is units.

Exercise 11.3

Question 1:

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

(a) z = 2 (b) eQtGbBCp710h7u11KtnPX5NJxFXJEBtUZ QHJen5

(c) (d) 5y + 8 =0

Answer

(a) The equation of the plane is z = 2 or 0x + 0y + z = 2 … (1) The direction ratios of normal are 0, 0, and 1.

9P8pjSJYtHz6i5eKtQZgkT2msm5vlDSDYOQTVtdE8h yRdjdftqKQIVl7RrwxUDzGWKvTlSeASQlwey7kIWmbewRZOLnsZyPITBQ6NBLSzPSRs MgdWpNV z5OfWCDZMKhSRFNU

Dividing both sides of equation (1) by 1, we obtain

b9QLHLnrRjCNm8BAAA6ZeIJWBzwuLP4xBZ0yc6 BpXMHsATqqGg KrOFqHCYeeFca3uPLSKq4n25 Ow7hpZ7Kj1i68aMz5 maElTQvfyxsFyXIZp Exn5N5VNTkHAk 919cdNuY

This is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

Therefore, the direction cosines are 0, 0, and 1 and the distance of the plane from the origin is 2 units.

(b) x + y + z = 1 … (1)

The direction ratios of normal are 1, 1, and 1.

Gv9Zm9RCr4M5MuYpvW4x 986zJaqDNROotteoHJPAGCz1Odzif

Dividing both sides of equation (1) by gfvW8ucF koqFcyYAsDmP3wfB, we obtain

T5BaLVmx1XQsXF i0sQhRxo1TbsEdzfDRjI1B72Pe41S L fxbQVMxBROx7S6FuCfLy3yFwVHGYbIUXPeLq

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal are and the 

distance of normal from the origin is units.

(c) 2x + 3y − z = 5 … (1)

The direction ratios of normal are 2, 3, and −1.

kfybS6BgsXTPlnny10J5x3 jbANeSq118eJwypEGjiNdfcMOQl2K1hbP9ZI1tzS8LyYCxnqRiMKfznmySxiNq 5bmXBovcDVuXz5B7pePDa7sHSGQN7x7HWe8cEJ 3Qbb67L24
Rl9kn0D6lwRhbk2TKE yquS6x9bLzJaoSWkU Y6ygcvgY7zkIKutMEmCSfkMgkQTOQG3qrI UoCREyH WdNKlPhBYMoHl9Pkgb8iCmDeSIdYur01GwjR7Q s9oKqxFm7sAbvG o

Dividing both sides of equation (1) by P7ca V2v Yp8P6ShMUSQo VVW6A9PLzk0Yd3 05y41g8YPtaW1ROhm, we obtain

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are and the distance of normal from the origin is units.

(d) 5y + 8 = 0

⇒0x − 5y + 0z = 8 … (1)

The direction ratios of normal are 0, −5, and 0.

1eRUYEjJudd19F7sR9xQQoKHVyB9K6xQO 1EUxxTAaOyA78zIW1NMKswwrMk8 UBduRfjxojgaZYYs S3tSpeOpv

Dividing both sides of equation (1) by 5, we obtain

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are 0, −1, and 0 and the distance of normal from the origin is units.

Question 2:

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector merXBxofKo2190EgY1spwVT9RrmtbTt gWOp6dD9EiiJYrfrN2Cny5sfYAS40u7368ovyQzHF0omzwz7M3EtShHGiY60an3y gVuesNei 5AY70wp9lEkJHeNVgm5bwEcYeP13g

Answer

The normal vector is, VESUIKxrVYMYumKpX0hvBjxcWEAL K2HWQbDJYjupxGme0wSJxCfXnmLkqy680Kg78ZIBxFkZ13Wd hfPUxfA54oFYy2gxatMI zmNVjJkqo11visS64In5b xMH DeZBQzIGQ
vuzcDY0 fW4d17zECLoVXgi DPAh4PojsVzoXlWhut5uItNav1qPtoY13WO0ty hlp7jrnTKer5A0 L3AhVpMaviHv27v KF9MONfquOZCU9Z2ypcRTHKhVTnoKubRTUKsotiE

Its known that the equation of the plane with position vector VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVz is given by, Zf4HC 0k4msGc2F8o79wYVh3v6SmLY5tmijKeR
kmhTdqLrukjGajoHGxx5v6HiFOou4bkh4iWhGpI4kBqQ3oNkfrd32HRti6 ZcLn pe AkCwdG27pLxNhoR9j3J84 rO9lQdK2cD6tONl bmvDWfEBKk yVBSGte3LwPzQZ4pj0

This is the vector equation of the required plane.

Question 3:

Find the Cartesian equation of the following planes:

(a) (b)

(c)

Answer

(a) It is given that equation of the plane is
H 8hQHdrhEgxAJdOv8jjw6QbOW5Xce0munGqfHbwzcsfOgRlqDjnsThB8ylH7ET3pKY3OFByB5DvtuJf Q4xzt1oWa4B8jwKiq sN48fhHhhQkYvCZTPVWc jUl 6PiQgQcKlg

For any arbitrary point P(x,y,z)on the plane, position vector VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVz is given by,
eL3fyRI7W7S yOI9VJkJxnaE9h4sYglF0t Rr48jPsHbUurnJQ4VTORdxyx2RtT62rAJZEwJ1iNZ cttxjvDze 3Jm87N0dO15LttthiigG4Kyj1qFyeJv HzkYGhjbHI7U DU

Substituting the value of VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzin equation (1), we obtain
X6uz5C1HW Mp1O9sceFH9743LhF5 3UGYGy3zBV7mh26syGHNmzhqwiFmjVxr1 yuTjOQH2y z6H5gy8iEtHbEtO isgjuiCyzdR9esHMelCkCMtWf7u522nb2qdGXnz1sbVm4k

This is the Cartesian equation of the plane.

(b)

For any arbitrary point P (x, y, z) on the plane, position vector VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVz is given by,
eL3fyRI7W7S yOI9VJkJxnaE9h4sYglF0t Rr48jPsHbUurnJQ4VTORdxyx2RtT62rAJZEwJ1iNZ cttxjvDze 3Jm87N0dO15LttthiigG4Kyj1qFyeJv HzkYGhjbHI7U DU

Substituting the value of VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzin equation (1), we obtain
D59VqUFpUt j6jJFqMBDiDrUPxbISHlr2Cyr1F4P6 v5EKZdRB8l tPIkbCGEGh87koQhPEuE0o0LkhpVLX9fwgGOPqiKve1oOJyh1JbZQFXU70kQxfVbExOvrbEkc rLhhG7tY

This is the Cartesian equation of the plane.

(c)

For any arbitrary point P (x, y, z) on the plane, position vector VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVz is given by,
eL3fyRI7W7S yOI9VJkJxnaE9h4sYglF0t Rr48jPsHbUurnJQ4VTORdxyx2RtT62rAJZEwJ1iNZ cttxjvDze 3Jm87N0dO15LttthiigG4Kyj1qFyeJv HzkYGhjbHI7U DU

Substituting the value of VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzin equation (1), we obtain

This is the Cartesian equation of the given plane.

Question 4:

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

(a) (b)

(c) (d) 1mEjZiXgjrirexLjDmrjOyNM Pfi63t5 eFyHV1RPtPIr203nz wL9gIgX3gH7N8yf2ALZPIuUY wzmo0WDsmQI6dTc3Cr9uOwyIYhuHYJnz0teUWwBbhyJaeqw3mRX5P9 urjA

Answer

LetthecoordinatesofthefootofperpendicularPfromtheorigintotheplanebe (x1, y1,z1).

2x + 3y + 4z − 12 = 0

⇒2x + 3y + 4z = 12 … (1)

The direction ratios of normal are 2, 3, and 4.
gBZMvsk bnacW1V RgIWv7ga44m8b 6az5 kwFJYweHbhwd hG 7U SYFSGZ6wou2uX66z2fez9HKPNY M Pjtvxi0oFWCikGUj6wB9gOZUD746uXxG2ZW0xUoT

Dividing both sides of equation (1) by , we obtain
oLAfZjkh

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by (ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are

LetthecoordinatesofthefootofperpendicularPfromtheorigintotheplanebe(x1,

y1, z1).
HT3KITOdh qBAoP1CvxjGRky98A8fJ4yVSDL84fSbdNqTcnYk IScUUJ1xv527 5AHdqC3T pT6Levn5euyFtkAtzcLjucfAcigB7QD6F35gfg4WRfnGlqZJMaSRLpLUcH9VQbA

866JzBMBs6 8 O9 dgTJW0T4WRJRyKYcLSIg32cG62go TdLVI1XT231 L7FQtsAe PJg3cRQoxIgXETkal b5IyEvKMhwh 23b6UfiAdwF t LtgIZ…(1)

The direction ratios of the normal are 0, 3, and 4.

Dividing both sides of equation (1) by 5, we obtain

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.ojDQINHKMP32OiSoX OUFGKTRoS4MO3Xn iNl8oem6wYtCL5DHeMaz5PwK8QSFiyLopeb1ma5anSLXQp6qYuNiq77l1f6B6fPB4cat3Wpnuy16Wj1vkiFtyIa

The coordinates of the foot of the perpendicular are given by (ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1,y1, z1).fYLk9GdsWnuZjpzW kxnQhdHICv bBXB3aui7ZXoMp1beINcXKKOkhG80aFTE2gXCNOiBFdDyr6ZwvQdoQZh6EWAUO15lOfv6KVc4F1RtNLi0qZEGNaatGKogim0bczaTFLBnXY

… (1)eQtGbBCp710h7u11KtnPX5NJxFXJEBtUZ QHJen5

The direction ratios of the normal are 1, 1, and 1.
xKNYqPaeHgsFGlOu91cfBl0lmGhzASGp3GrOSAfJFGFHPWZCr L2K3YAHx3vcC81ll5QqwwGHU9nolfj 7TFpaXf8 9K00Wtw peSOQTMKjzBiK oV25YCS2fCi0vNSU3sb LUo

Dividing both sides of equation(1)by 6Iik9vUV1vu53m1dNSX4rQOPyBjNOBbD ZzBtjVn0rd7RpsNa51ADiMdMFSEFvXCfFZ7it7u8cDRxmZS7uQ 8dErBjz8gJuBKFnqVoXrDkgMdVvvPwec3 VdDmsUSD3zHK1RyGg, we obtain
NdE4P43mElIFrcrkaE3GsJaAsKcuM9Z7s8T2a9xCs6eTDid0vTutFPmwbdhyfE4BVCWFdO8Cf Vo7t2fSl mK8IPGlBpEfsiOYQUDTa4m4y2r5nI9ECZ3Npsk13vuLMOwY66EaA

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by (ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are
lgtm7dWPfk5aeD612tU6i Ad8iiaP4ocmlYWV PHAcKPDjTwuThdIe4qPTEc 3qZwwRvv7a9i78hNHECZjP wMEp6ziqX

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1,y1, z1).
1mEjZiXgjrirexLjDmrjOyNM Pfi63t5 eFyHV1RPtPIr203nz wL9gIgX3gH7N8yf2ALZPIuUY wzmo0WDsmQI6dTc3Cr9uOwyIYhuHYJnz0teUWwBbhyJaeqw3mRX5P9 urjA

⇒0x − 5y + 0z = 8 … (1)

The direction ratios of the normal are 0, −5, and 0.

gk0PKpPqNoJmnvH0 a8Dv6TeAzmi9 fYPP6mbekSXKNO7R5gtGkZiYODNaCnE7hyHoLiBwDoE4sPBHDgRWTvDTnt94POnEMOo y0SowPgigA1RH3LzpCGmnsZw7SewiVdtq5 Ns

Dividing both sides of equation (1) by 5, we obtain

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by (ld, md, nd).

Therefore, the coordinates of the foot of the perpendicular are

EkRsJm0 MVjtMrINznQHR9YC EZGU0SjdHznCdhSXl rgk P2IA8Ji7sdR5 10ss3YHZ wav299 R5GKjCVEA6kejlUNFRstAezKth2X8InqN3Nu4SbizLlucRJ2RU10SlQjwJc

Question 5:

Find the vector and Cartesian equation of the planes 

a. that passes through the point (1, 0, −2) and the normal to the plane is

b. that passes through the point (1, 4, 6) and the normal vector to the plane is

Answer

The position vector of point (1, 0, −2) is MOzw8jvW65VmDntn3DgK3RLy0nJiySxli2DtgSU5PXYTTubX2S3cnl1gFtLnXiEwVuanreWBItdibdwfqroKnOxuvoROy7A5AS6s9HOJ7KQ9C 2dAo 8FTGzFU0 uV 2ad

 The normal vector ZfnCVGLMYS5sLzLwek qV iNWlAwq0Fx8sHW0jjwuGW3WYb356bgxNiaUUYp9kgJ12aJ1D8rryIfi4UGUZoDU3NCG3nAcXN4YE3UyxSAojxXd7SfKFR perpendicular to the plane isk4EPMLMtgqr1M8bDTWptI6rAGyK1bZOsvUplDqf4 MPsWwVCy0BAwi9VGCe84YVA2YgMbJ AjIQpQyhb2AR6OWHNermR8O UyMtcuB65fOSXcH2KDvXk1aE3fNw7w4Fl8rMMH9o

The vector equation of the plane is given by,

VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzis the position vector of any point P (x, y, z) in the plane.
7fdrtzA6KzJPzMbKtIpZVSX8VG ebKXoiQuXoxmCsUD2ihQpGinUjqID OnAntrNPU4GUvwKgrWy7SbToGl8ie kv rNhtZihA25D8pqDmqDICBRYJI WXmmrbo97m7QBmFzM

Therefore, equation (1) becomes

This is the Cartesian equation of the required plane.

The position vector of the point (1, 4,6)is e7RglQ gdWtRmP3vgI iYllOdiKKbAC QcWf9zoxDUs5QN4COaCKCmInIfP3niOY3L skBhggOXKx2HgeGRAEslCDmMuRv6iWMYXRNW The normal vector ZfnCVGLMYS5sLzLwek qV iNWlAwq0Fx8sHW0jjwuGW3WYb356bgxNiaUUYp9kgJ12aJ1D8rryIfi4UGUZoDU3NCG3nAcXN4YE3UyxSAojxXd7SfKFRperpendicular to the plane is NI UHev2kDQbdwWkYBrU 4 VCXcOgXfgYaUuOKGwqbMEz2tZ6oP6jEllTVcq7b340Q2m6fdmjbR7kzwQFygVOxdGC8SV3 UhDP3sA u6i g0bXBpmyKw1mL6qL212ZYMZzibtd8 The vector equation of the plane is given by, pYHPGDpXb tv6fHBkns1lfUaCBi9JtKdLLVYxWwPSO1O 0WlhNh8RjTBFnAqLyfH9WH a8tFq0kpSKEX6zFhtfLEJZ8nCXYmiiD9qCFv7vgnx8z5VlUQvDkuoKZ3MPS4N y1 mQ

VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzis the position vector of any point P (x, y, z) in the plane.
7fdrtzA6KzJPzMbKtIpZVSX8VG ebKXoiQuXoxmCsUD2ihQpGinUjqID OnAntrNPU4GUvwKgrWy7SbToGl8ie kv rNhtZihA25D8pqDmqDICBRYJI WXmmrbo97m7QBmFzM

Therefore, equation (1) becomes
WzA8032A M6JLHmNgZQL3FjEhfZj4OYXX6d6cARROFCxN5SPmLgMSIo8 BFUoFDIpUtE 0eVu2o6V6c2F OrKt5ShaOAJ6MOAWgxvi3iPnr0hj7v Zs6bYK7nOyEm46zY6H4rs

This is the Cartesian equation of the required plane.

*Question 6:

Find the equations of the planes that passes through three points.

(a) (1, 1, −1), (6, 4, −5), (−4, −2, 3)

(b) (1, 1, 0), (1, 2, 1), (−2, 2, −1)

Answer

(a) The given points are A (1, 1, −1), B (6, 4, −5), and C (−4, −2, 3).

m62zB3Co7hyFE2vp2SGgVVbuuBrhGp5Yxwg0ZD7tRV2ya wA4q7ahWlSqI

Since A, B, C are collinear points, there will be infinite number of planes passing through the given points.

(b)    The given points are A (1, 1, 0), B (1, 2, 1), and C (−2, 2, −1).
zKPzARAAoxOPxx3gW6K8uiAWNcLW75JhnAGK99nxNf 3lctntws7XPpZ8u2t9Kb2OawjTXxlrcbzy1eBdHzUYCbfY3YablpsVTNGwvWV zOTPifZSIiyeqN

Therefore, a plane will pass through the points A, B, and C.

It is known that the equation of the plane through the points, and, iso6YoKHYexF e4BHQOcMnsglGvcQaDmYm2JElQt2nKNJAC4ibKQPVkCuKIkAgLYwSv8iZtcdQ33xVb m7jd5FF2G1nhZqK5iMv9jrZD9Msapgw 2DNYJt3DIjKAPNVy2YNnSDubI

This is the Cartesian equation of the required plane.

*Question 7:

Find the intercepts cut off by the plane

Answer
hJDyAbsN7z2N53fFO2ayjnR6NJyUIqALefQF7yiesNqgqauBHWkndOs105Fe7 i7hHc8HCw3Lco GhJGO5VeAheIvhVTWCLMvYiAXjgausTLkx1KFaCE MYHOsntG7KIn17z7tI

Dividing both sides of equation (1) by 5, we obtain

It is known that the equation of a plane in intercept form is , where a, b,cX6vxPaYV NJyPw5579Vl

are the intercepts cut off by the plane at x, y, and z axes respectively. Therefore, for the given equation,jpG3kKTTExMgXfFzE1FJkpM DI5GcRRjq6HZR1P1JiEvw1iIuXw4PDYyp71Xv1SOi63KizMUAV3V6PE6ouv0Y pcWvOneQO7wOTgwDR6LlRxE

Thus, the intercepts cut off by the plane are .

*Question 8:

Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane. 

Answer

The equation of the plane ZOX is

y = 0

Any plane parallel to it is of the form, y = a

Since the y-intercept of the plane is 3,

∴ a = 3

Thus, the equation of the required plane is y = 3

*Question 9:

Find the equation of the plane through the intersection of the planes             and and the point (2, 2,1)Kkoki9mkAQEHbVF6loAFzs9wKtwF903EuiD7e4pBynlnbndHeROLvzjrOFrd8tLqVnfNvIRTdQ4z3WNFvPI8sO3sX9q k6DxVznuzIt0ynbx8bUMJXS5gMh 1mj4oPm5GRiGShU08Ca3DLHR97bB2fi8wBeTcEiyeuRvDWw nB7OuFjPIEVhqH2Be71I1Xx

Answer

The equation of any plane through the intersection of the planes, 3x − y + 2z − 4 = 0 and x + y + z − 2 = 0, is

The plane passes through the point (2, 2, 1). Therefore, this point will satisfy equation (1).

upKQnlk8su8qo4myJFbMRdjtcmpuDGN6NjEl EAJb6xrpvmc0xUAROMRP cTjsKoo6jX O0fEDl6kIVbX oMhK9mEs4W03 MIQBABCJpEQb 5eL7huphMkLspK79yt8SBgqgOM0

Substituting  in equation (1), we obtainNSFcfzBAeJ8Aw

This is the required equation of the plane.

*Question 10:

Find the vector equation of the plane passing through the intersection of the planesand through the point (2, 1,3) 

Answer

The equations of the planes aresLMNXJWZXBoCtaXZ0a9rZAPbwSDssLG3wssULZ4TZLA4LPqUNe5Heu1QelBICzZzP6FcsPGEzPCPL2uyqeXpyQiKT4AsVwtKYkz 5dh1rgDBAMqXzTjMVOjzpXz2VvjPNVlEdLg
jlxZJdw0bu0Psk4mHP1kCK0hA8T lzzsLhxBXr8 5TWRVHGr4rYwavKL278b Y8YEgffQqFfE9mkgKX 5MhvqJiRj qYbKiCyzw2

The equation of any plane through the intersection of the planes given in equations (1) and (2) is given by,776nE9yP ZLaIT7bBChFu2IRisAx8SihSOOVbfamstSGMkfa0eM3SF5KyGbib3qr5n htnspBQlqsuy3 HAwpLtXPzltVzOnYEVtIzuUsnXWbbI7VNqrnXdYYqFQ3e su4TdC1o

,where icsnj5JGYkij6FJ j LrQCuFsuuPKqCHugKa NwL3wUeosbL9NNLlw9ZxtX8YhflVz8sUwAMS3MyAckQKvEt3Zqz5UW9ygc5WGlPNjC5hFh j ACmezHDc

TCe

The plane passes through the point (2, 1, 3). Therefore, its position vector is given by,
TUs ft7oHEFtUtmYMdsv5SwzJVOCquso9E4TfvHfgnnrBdcpI5 sdUFl1rJE3W1ITFYsRzzsnYQqW1M6GB7FUjGZppzaQU2eZJt564it7j2QY78BhAyUvnDprlCox r 8j7mGA

Substituting in equation (3), we obtain
8pbnOBkeDPrchiuawf2wlz 8Xo4XA1ks4lNdppFgQ Aj62XO49nZBW3mxm0cARev0J

Substituting  in equation (3), we obtain
bcShqq8xBdoNDcKE6yjZ9lY2pLy6Dy 8PKp40BO3muFHa7opT W1TAxyUF15TipSnjpjki3vrQQHPdlxSkwc3FkMrhs5XFYLn7TYvrp1MwU5ZP0uJBdyoJcRVdpteP wuW7CRs8

This is the vector equation of the required plane.

*Question 11:

Find the equation of the plane through the line of intersection of the planes

eQtGbBCp710h7u11KtnPX5NJxFXJEBtUZ QHJen5 and               which is perpendicular to the plane0hpC9TWSIuCRqtHSUvry0de5lUE9BKbGyP1Rw94W2ZLJZiXgeXoFFzB0APwRVTxsZtQaLZ 7mgCzECz FMRAidhvPHu4VDK81SwZp7dFzPMnx5p4I2oFwIudo 8rm6Io13F lIA

Answer

The equation of the plane through the intersection of the planes,eQtGbBCp710h7u11KtnPX5NJxFXJEBtUZ QHJen5and,is
lvafRHFzP8SPvgPh66jIHvsUOJ9uqUzxeDswdZTcDI EzvIcdtEueOBA5wI7X1PELESs0wfyMv6Id

The direction ratios a1,b1,c1,of this plane are(2λ+1),(3λ+1),and(4λ+1). The plane in equation (1) is perpendicular to 0hpC9TWSIuCRqtHSUvry0de5lUE9BKbGyP1Rw94W2ZLJZiXgeXoFFzB0APwRVTxsZtQaLZ 7mgCzECz FMRAidhvPHu4VDK81SwZp7dFzPMnx5p4I2oFwIudo 8rm6Io13F lIA

Its direction ratios, a2, b2, c2, are 1, −1, and 1. Since the planes are perpendicular,sI6RSpC9KAdLjnFv4xVM5fausH34vUbP14gNDY9zSqgO9bztGOR8lNccZHbwBl4K0fRPCztPgljaoPddr8onX1DiVm0cz85Sty1KnG1kZSloGCXRYGrzo2k991I YRPyUO6VSc

4Nj bNUjoC F3Qoc92qlOizsx1SV6aV43KWMjVyHQHp 7mYpp0lsqhDz 04pDv4vb2UklSlySjUcF73hR abM9 g4yWqUqJ2k092kr8lN2TRH kiEVtwKrEhkZt qZNf I8n0OcFMXn5Q7hFubjjXNLoWk69E2YcYuySUHUidWaY4eUzRMUglL8 kWPa velf IC3ZU8J3WRo8gShzgBuDzamtqJj34bDZLlt95268CZXFLLVXUYCnt1b8LpqOACicwH61D3nvuoQ

This is the required equation of the plane.

*Question 12:VoVocnTnz508zmP 6SNMiD3GS4r3682M0lFuzWy3qADlBUeYEurk dexY8AEaozX74WboPE6f6rivCDTBS2ZGM a5Giqdc5dHmX2Bjb

Find the angle between the planes whose vector equations are

andYjg5jwdsIbWyWfgqXKH3pRiewIsejXRlEGC8nt77vOhwD5ljNOQgvHFfItNInRSrJMYgnhVcJ5dLlwXV74yISCYP2cSzfkwgFZ501g1jnyUV0g0PH6RTkR g3K50RrNGcSfj0pY

Answer456Dhty WONBczpOzpTHmsaBY0csFfi7fmVOMgOw9mDJENLJp1Eyut4Os4HUx0dcR8ZuMzJFxnNrBDluJRQu01ZVws9n95gT4Zkv4kJYEi8Clk4cer0cF4 n9Ifh6PZSfSf432o8VeRpf6NTPf01nWEiIwqYDrlJM 4 0XeKQzg

The equations of the given planes are                         and

It is known that if and are normal to the planes, and  , then the angle between them, Q, is given by,ECcrCJvK 1n Agr7JjIl 2fPN0IKgv8X9KlHTErkpeHci6siXTNeQbqTBp wr7Mw7MZEgJnRGsPQjRise DpFNId76nac0iOZCVCHZpP4RzzMzgLgwY3sHB 9seDPJiRvNi1cmo

Here,gg In pReNSZZ0YmYOeFf5L60rbH0 HcO96F3OqHgEex7NpmEzl7Sv6epAqz1547pWiwkIl7mSKt3Yvivx5OVhjkSwJNgxp32cR6b6K3Q sA8z5dK0sjXo iNkd2tkHV1EeOLUc
PMO9Xvem19L6T1WmmV7Ut72XI0Xp2DMQlnLDfHw909MABaTEePbd9s2B2YgLt4qM5WSGa1dNTCOdKnbu9cmevsgyNx V NrgucgPg9nIhJRhEFOknNtqkrFmNB5WA6P GuctThM

Substituting the value of , in equation (1), we obtain

tIn3FI P4Gl8JBGVFy9KS8ig 2VAVtYpuMUd eNyA7VcdiHt3IUSDfiGDbSCBn wSfOttKdAOKHIvJh4y5YJ1sOj5l5tCorS7Tp7GWu2axmFylmzzpjrRViwc9V1Q wR6MqsheU

*Question 13:

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

(a)

(b) x8sS4zuB9Y5haUNSWxOP9ZEq30k7bs aVmWHQrH8D15wnAVB325bIOa2 MR1plqHkVPK6IinOOiFMrti9A

(c)

(d) JMA oAHCEMz25ziYyIUJMTIhXbnRYU7O9Tvq0xAUxMthoPIju7 v3KbKFKlVCl3ZpfQXEDhTaXQSk9mK6SO97SbMzMDYmPSn 5c12zA85wJjuBGKkEm6 uLp0P5nVBImot RpDM

(e)

Answer

The direction ratios of normal to the plane, , are a1,b1,c1 and

XmjBx FLHqElAaM7sb5P kpuDMV3BBaFXx7bseFHoubgS RamikpIIcqFCGJ iep7

The angle between L1 and L2 is given by,
Ya8WOecybEG8T6H31Mz5RjXkzC2dHtAVtgmrFQjPx6Uh1LskNr8djUjhQLNMBS q8fKxKAYQ6BoAMXOWSVxQLFbMY7A1F ajP7Hz2By VSW9X 8hmGz0nGIWegfd7m2bupSVqOI

(a) The equations of the planes are 7x+5y+6z+30=0 and 3x − y − 10z + 4 =0

Here, a1 = 7, b1 =5, c1 = 6

FyeaeCc9voCC91Eybpzml3Pd5mrGXZJrHu5goTYBDwCYmWv 7EJAvwX7i9lG iWyTWj5hVcwmiVD0wHwaQ04TJwmL52UczZiLslH1yoFmEU7p59k C9v1mfuWeqEB0RErLRVHQ

Therefore, the given planes are not perpendicular.
4Lmjw5xjDAuefv0W8GDb6qspniY25CM1 xQ NvHPoiNjhj7crZrRa

It can be seen that,aQIh1 BhdMmB07FPHfn oNQK4SM7w3L0Lc8PWY5N5EqIokCV1v2Kt7TuW9ZA2Wci poqrmCd1EclEww t90Ol6r03YSydO4pR8bTWi7tDKUP7FArw8B7IpYKILS3WajCeFNiLwo

Therefore, the given planes are not parallel. The angle between them is given by,

Kj FozPrrcCZFC0okRaYuvFtCGbqTLx9mGpEFz RG5weAyYrbd DZgZ je5Rtd6BruXX6ulW HeISg bH 6LtjXNfe30 MHL CL3O4FV2cGZyr4LbzbLOaDnXRRepqI4oOs5VM
ZB aJ5GDF VB 3gwLp0N4jq4MYE6iwfMvrwdX2IMQXHH4xuh6glzNI7i

(b) The equations of the planes areujrvCe ScNnGaa2wdeva3yTbYypnZUYbxrdEy6lcY6if8MGDt3I4Nj2S tZADbYeUSFmagNV5eJJ and ic0 0odFZKYsS8Og7xDaWzw64zWgrb9uuUdLA h7vEVHcfDyrVIq1 u4XuJ MWRaUF2Yq8PnbiV 7z1DWWZSqqEzoAj7lGCRhtMHvLZVdgD8QTtdP bdEkGsY1bbSunipU5mTGQ Here, and  xdu USs1yCZU2Nad VSC5mQ5gkivYT80FMLFKd7FyBnTmL70Bs nHHmXWE94cQMMR1DJbNWFiNsa2EsFsiwBKeMgdGOXGZIPWu9VM0aly8ZqZ oHnQBaDXaJ6zoAAyv0aOafIE4jlkoTodP3eQ8TrqW8wV8rnGAke79u y2D78bQfEzVp7EvGKYKWAEmmQp qKgPuk84vatzE5s3c2qXyX2zELMWtFUU0YEllD2FGvunZKbQXBHYDBePJAjjVT6LhoYGRCLpBi8ST4

Thus, the given planes are perpendicular to each other.

(c) The equations of the given planes are and kHs n Here, anduTPJwGrjy8MxZVCaswXiUxrizpzGXhykbY JKoQc0Bz8T7Qj8XmKoq 6a0IkQ6EdBEOaNrucxWDrMuLjZEDmL8ezQZSAaBnC7uJ5DTzGqcNImMba4RlmeCQXj3jFX9K0L RVqX0dxOyaYIeVzcqy62TtB6VhSOEVyhtioA0DWLnW3kJmkr96xm

Thus, the given planes are not perpendicular to each other.
hUamqEg6SD53bOcePe05QMGi3uhJvTOmYqs HMh zBbPsh9unRp2X2HOULORHXyHqyAteUlAxQ0PVaknD4XFiZJBFl5

ICk oDGV1Tor0 E259ywU93vQ aHaA8ifybepJZeFd07rk0zqkX7SzSr03vE0wJd2hESTOy26Qn7ue1MR6utBRCjCEHfTbc

Thus, the given planes are parallel to each other.

(d) The equations of the planes are and teXdvZiUCh117PTjKqFVr7B8xMLoccduW3E4ovkNTA34RdWjevybiCAH7pCe4UzGLoeAmgtS X5fikRZ 0JZwrx51od5ySzl6P0 Here, and jhTmXrpV4ceyBNdoGk3npsjTISqPCt VLq7 h4ia m7eSJA9Hr6gTbBIO9UmPhFFghnU uXgmwV1veewhQjPbZFH5x7cM9JtFWYeI7xLK6LJ1yq9 35pjYQyRpvVJBflYqQlg o

KvExCOklCpby7q qmDO14aAlPJBojt1Kx PWnv0yXy4z5BcFg 9k2d

Thus, the given lines are parallel to each other.

(e) The equations of the given planes areand GW3DGk8 AIYoY1TNmlny8of9w8Y9IuWiXEn lttFvp SwxSQEGcpGo3jRDr89qvvKB1iJ6cUPkFTr tHere, WFiyj8s K 479uoM vvS1UbkDbDNhroXuZqmK6jbUTXJ7UP0Idbl5fbYF4Y0hWZ2y01LR NbxIN9 and Bo1LJp5EohYRA5dAXbSoygru4 QnpauO5PMaB5zHvGGsatqwhEV1t26endPIhoOfxI6MKvHas6eq W 1XUZNq7PriORRT MiCbLQ1R0c ISSL9UWmonnXR6VSOJRf2jtJwuAq3g

So,pj0aYJDrY4AfBHaQa1

Therefore, the given lines are not perpendicular to each other.
utR3korHjmmpdlUpc1U9917Tv4aL56c23Mwh8nHmj1jb9eBrUEWPl09ewI2B3S70b9xjC3tM0Ju7xfren0tLOf2 8zFwqnDUezelhQd 6qM MDuhpJ9oKUQ33UjSUGDm1qg7YVI

Therefore, the given lines are not parallel to each other. The angle between the planes is given by,sm 1C2N40KsIqsEQ1n20IROZedAk 44AblkLOkQ1Ztm2l9SFiGvaKX

*Question 14:

In the following cases, find the distance of each of the given points from the corresponding given plane.

Point Plane

(a) (0,0,0) gyn2ZZhks9s xmyYr

(b) (3,−2,1)

(c) (2,3,−5) dkh0GN0mhnSCUMz7RimCaQZBLx33gglAvkCsb1jIgbZtWh ygev5FEDgAlzA8lxb5cgRBuu7G51gP0hmFC

(d) (−6,0,0)

Answer

It is known that the distance between a point, p(x1, y1, z1), and a plane, Ax + By + Cz =D, is given by,

The given point is (0, 0, 0) and the plane is gyn2ZZhks9s xmyYrMmBI7ZQZVyinjje kOLggrFb0dfYjGK1B7G1z8iEFiLcp e1LyRPvaUAWN1rCQRe2jh8WNyXSxYKnpcf f5XKog4Dd5sdSz4A55ksJcHI7UrO1FgU9DYXDA YX22shQYEN63Ms
RWaNPFjvYqxDvFbdk7BE9JEB9cVHtYGG8 Dw6FxTel

The given point is (3, − 2, 1) and the plane is aTc54X2bUJEnZHFPDim6Rh9WL2pRupnIzEea5nxCmdtHt338m095fQkgEWWrHu7f0LnCxJJaFc5jwmgm1l9HhQVMVsUQNdq4NXjU90BmIdJg1WzuivlvDsCaz5 qiz RqyGCjjLQ2N1phqfMVcY2BiIBVKeitURPn0KAiWitJLdP2i fDf7Fs4UIYsDoO9Y

The given point is (2, 3, −5) and the plane is dkh0GN0mhnSCUMz7RimCaQZBLx33gglAvkCsb1jIgbZtWh ygev5FEDgAlzA8lxb5cgRBuu7G51gP0hmFC
DLsLbayzzVFZ lzaEgANwe46Jyunhu23sDFuDbkPTdiHTP5vlzBDh7AzaXOimkMjVRK j8FIZ uad2nPcMJUe4JBBLWZOAn JqpVmOL9x2erNL5I utGq5EvOCvptNxGqR0q tI

The given point is (−6, 0, 0) and the plane isO5QAMy1lpZ 7coWZq9wTiEtJQGDWBRFdl3AwGaAdt9fzc rcC77zYzyuLT9r AJHl4RBM E WGN3OBIuFFtmW37ZE Iz8HMBrqIKvI29dTA9nWFfvpJHWUQ7hcFv C984s1csaM

WX1efEhO OnsFnxfAnYMxMYwpmwsQomoQpttdxmVEdqG2SlQwryrDpvGIZ0pY5mMalwfSaEOXCqZd9OAH6F49mJcyb5ZG98maIkFjPOq4uxcXsxtl8ujB 81yR95gi9UbAWlHU

Miscellaneous Solutions

Question 1:

Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1), (4, 3, −1).

Answer

Let OA be the line joining the origin, O (0, 0, 0), and the point, A (2, 1, 1).

Also, let BC be the line joining the points, B (3, 5, −1) and C (4, 3, −1).

The direction ratios of OA are 2, 1, and 1 and of BC are (4 − 3) = 1, (3 − 5) = −2, and (−1 + 1) = 0

OA is perpendicular to BC, if a1a2 + b1b2 + c1c2 = 0

∴ a1a2 + b1b2 + c1c2 = 2 × 1 + 1 (−2) + 1 ×0 = 2 − 2 = 0

Thus, OA is perpendicular to BC.

Question 2:

If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.

Answer

It is given that l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines. Therefore,5Cs7YgVrDIJlclgLET5aTWySlIDV

Let l, m, n be the direction cosines of the line which is perpendicular to the line with direction cosines l1, m1, n1 and l2, m2, n2.

xt4pM4q0kePuLoptjK1NWInARxY gHnApi YfJNYHrg3hzi KPj19Hpyf CSElONZPEvvc2KcO0iglFGhzc2Y511WGqFucYrUmTkgIS9c6NyY35r

l, m, n are the direction cosines of the line.

∴ l2 + m2 + n2 = 1 … (5)

It is known that,
TwG6PMeFw XSFsUoP Sfq8 tHtjiMZacJLtmimPzGqBFan7NUagUo2wZRb5m5KFcbWraleFY7ZJ69f09EjwH0EybgcLBCZyNjJeAtanbleEcRXsZBCoLzEzWA7HCLDPRljQIJZQ

r6IobS2pJ8zb V33 JezwCHla8Y8WdrW9JSnuLVCCJyl51 CSLOJeVe 1byWKVrVY3sRDd0u4lc1Ysc6dvXE3iWUCn4 6Alm6jia5gzeR2I56 hHdSI0571ZRdzP6WQwrHBLw04

Substituting the values from equations (5) and (6) in equation (4), we obtain
Tue9zsplbvpnlmeorVXUQ5CE2tiNRjStfOLp2gcVDFuPQi0Fm6u

Thus, the direction cosines of the required line arekvmQX36HVGhkhY12M95eN0rXUOvnHWqGhPzv i TEY25sx3 76 cRR1FDI9Yan7uPLv EuVgfWyg9r5alCOlXyKwBvenx50 m 12t6LgMgr7mW4PkhvqMCpeWHH2Ip1hZy 4kA

Question3:

Find the angle between the lines whose direction ratios are a,b,c and b−c, c − a, a −b.

Answer

The angle Q between the lines with direction cosines, a, b, c and b − c, c − a, a − b, is given by,NkO 7rC 9nZSKiZC5BedsJxgPuS5MPT7TMMu

Thus, the angle between the lines is 90°.

Question 4:

Find the equation of a line parallel to x-axis and passing through the origin. 

Answer

The line parallel to x-axis and passing through the origin is x-axis itself.

Let A be a point on x-axis. Therefore, the coordinates of A are given by (a, 0, 0), where a ∈ R.

Direction ratios of OA are (a − 0) = a, 0, 0 The equation of OA is given by,HieUwtVjjCOM mzEsgf0YSkWi8AOrqlqli cSG92zmfu7OyAATF9hcSi3DrOo2oPp9I5ZquTGyXUj1jcIQaQ4DObJVxLrQn1zY99K39eP

Thus, the equation of line parallel to x-axis and passing through origin is

wYnG1fBlZuT2Lj4vp3z1eGgyqe5l9gtkHjucJY2Jmp7wWEKo8TMqQt6yq2EO2zuqXmhn USDWCBGBeke3vwqq4YYgWzZ 3PvziBV0PbT1RTNRSlc0lmmkjoIocg6ak4LD5f aH4

Question 5:

If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9,2) respectively, then find the angle between the lines AB and CD. 

Answer

The coordinates of A, B, C, and D are (1, 2, 3), (4, 5, 7), (−4, 3, −6), and

(2, 9, 2) respectively.

The direction ratios of AB are (4 − 1) = 3, (5 − 2) = 3, and (7 − 3) = 4

The direction ratios of CD are (2 −(− 4)) = 6, (9 − 3) = 6, and (2 −(−6)) = 8

It can be seen that, Therefore, AB is parallel to CD.

Thus, the angle between AB and CD is either 0° or 180°.

Question 6:

If the lines  and  are perpendicular, find the value of k.

Answer

The direction of ratios of the lines, and  , are −3, 2k, 2 and 3k, 1, −5respectively.

It is known that two lines with direction ratios, a1, b1, c1 and a2, b2, c2, are perpendicular, if a1a2 + b1b2 + c1c2 = 0WLqb43J3dkDzjDUb IB7wlz2nLdHD f5qOW27dYeQKjiEunjvKANH9xTSD5S dwbHKOz TMMCshIaCuafVKSJDnwLzeH52Fuyl34HTnd7CB2iehX0msp3FfX468H8WiENMmY2vs

Therefore, for , the given lines are perpendicular to each other.

Question 7:

Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane 

Answer

The position vector of the point (1, 2, 3)is 6NlrXsPtTzvApFshejMr4QV5MLhwrW74eEXitlmUxaciIbUq1DMl78Dzxi2UbQp56CFft uQeNMFMSZ0AT6R8Xg ZuUN5e9n8eHFPTRnXxNXST DLtktSuSKtoEc4jByJXj3yg0

The direction ratios of the normal to the plane, , are 1, 2, and−5 and the normal vector  is 94FUHfYhbsqWvMuPL4KYFIBptmTByahr7FGaF21DPduXyDM5oXATaSNdKW3Go VOC3ajcTJgroYEi2nuAfjt7RNKXDbCx4k2C

Theequationofalinepassingthroughapointandperpendiculartothegiven

plane is given by, JkuAnbyESDbz PVuIo1hNYdyye Enm3AJM wownIps6mbswKxUgCBQ8DRDrjze

Question 8:

Find the equation of the plane passing through (a, b, c) and parallel to the planeXUslyQiw5 yjz SEeItCI5zp9BWkQh4kLWQhdgCgm9jlCMWLAAfedVucuhBRg1JUw1NiEppDXJS2GQ4kuxM1CP0u4 yni1jMi5rACWEWmK7h63W8z

Answer

Any plane parallel to the plane, , is of the form

The plane passes through the point (a,b,c). Therefore, the position vector VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzofthis point is T KSclpODPdsdzcW8pGNF1SVxRLvENKlJQ1esGxkTsjQerR MAZJyVKr97FlScSEjqy06820RIddv1VcZPO JyrYEXHF03PBajJQtU1CJzFjDYxR55otwnNASwT Xhgh8Xy0ZQ4

Therefore, equation (1) becomes
0hQJbro9WWnf ob4hBoJFqz9CZUAPi7VZfCcfGKCkkdLWKHZpxLpSwXP8VwhG0bOgsXdRw PeiNjzE9ppWaPEihFjdt4nEA7U VHY8SSSnWuKGzMv04D2Di2RbdugMKplpObyro

Substituting  xPLZZ75ugo84zN33zHugOg29fQOsBCjFudFH0j2g13CAQFcaCsZK6iOoSzNI4bqcg10nin equation (1), we obtain
1ByQBLiRUwlgvKZUyn41obP3MdKiQRAAOs6rFemgxY3uOyvTAhguoWiIeF3RIL5Jxkmvgf5HxNXWSBaSZpWbtqgCE07Reqv22e3kILJIKCJ IcSojHP5H92 ulroeY4lkEsjc3U

This is the vector equation of the required plane. Substituting  hN8hNBf iuOZf5Svi6wXGet2dQyWvSb7NE9mMLy5zELPnx8vBB244WdqB6PMFWDy1AF6nKqW ZqB5c1qAzOTJXt8WiDgN3lQfLYwu2BncNrFD hsgeRemKBB9eGOQkK5jycsR9oin 

equation (2), we obtain
Jb7TI9tqI7fhA0b1pFpmW0NynU2Z RvR9LMRnrOr07iFqHSzG a NX2fnAWmG55MXpfEXc5ntz3qUTWMZLVLC9VfwTeubhfKQVwwGLrHGdkuMSBHgnAoCiS z8sbPAbh R788tk

Question 9:

Find the shortest distance between lines and.

Answer

The given lines are
o4HwRTAejQ0cuWbkwVqOrHaXDRNmz5nkRU3TpIYyNncksKB1F0rCJcUWgKikljMqJPBL wOugvILGRWEUCOOJZCEdiUpM8OkIl5L36sMlWrZniL5Jdf9aIURIhQev7TgQcmcCX8

It is known that the shortest distance between two lines, and , is given bymqwJOW a iRmy4t9pdQplytjH8cjb7lVQcgIC7FOYxp2U1nREnp6UNCawV7xRU28dONqzJ JjnVAfFTTSvjOS8BDDRhsYFiZB EvU4Ohh6pDoDplnY8fgsTQ9sBUX4 TAYKvoXg

Comparing to equations (1) and (2), we obtain
HX HfljoMAwohuZMBL80O4X9ILXiWrdLiFkz OCQpo7gDcj4dTD0O16LR0fdh2sCzbmM0Kc2LnU680COoDGu2Ioz2fkKVF5nX9raW86 SPqNcLbN L0DnZoO4OXW5E7sGp5S3McDxCZipmBOQnVGqJSedBxxyC8XvkR6L3i6mpE5wvONxNOwK3FHwhxD034qtLiQHUhuMkem17iHclx dd3YC4cT NNaB5AWDM1ov9HOKVaKKBardz3Y2kKAdL9K5SXy YomKpyS4

Substituting all the values in equation (1), we obtain
ynPaRN0GDjlPO7ProsBCWaAC2ZIiGBgshZobZfF Kk2GVXsTZGFfwnWnFgHINtxJekWQuL9ORJLwbuWWPauJ2szbYDfWLowPYUkfR9vMdbkjlhDuj4VEktTQpbdDyxbNv5Id Jc

Therefore, the shortest distance between the two given lines is 9 units.

Question 10:

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane

Answer

It is known that the equation of the line passing through the points, (x1, y1, z1) and (x2,y2, z2), isCCB9syaVOVDtdWHq9hktju5rGWsagAUsUQQq 6d0eVjL txw56HB6go9rcjNps LAQp KkmKvthGdFgkTuZ0Q

The line passing through the points, (5, 1, 6) and (3, 4, 1), is given by,
wPEb5 PC3ywCFEzc1psTFat eFC2OCNKYVlEAWLO

Any point on the line is of the form (5 − 2k, 3k + 1, 6 −5k). The equation of YZ-plane is x = 0

Since the line passes through YZ-plane, 5 − 2k = 02AoRVwNEDGhgXt64RLh8oKUQ4kNLk5nljEZxV4H ONmEINnBC7BKF6XvXH7Jze8brJMXpxfux etX O2HwP 6uK1UEao5ubvCEr13sCg msbWFPFh0lQ Pn sSt5HMSmfNz l A

GwB8u0vU1sOsxe8DleXANK cYn0DYUoCk4QPd5YBEOT5UC4oNNZiGuoaL Zz1ES2VBopcHc PyfbkJSXbo n1Gf5L7uUnYWaOyHnPQRk0lyHIyn0NtVa8KYyAf mapXC1MsLlc

2r53Z0MfxWxIcGBwUo jIX5sulIdDzzA1cMg38mTYVRwtp9jQEmDcrd9sUQgNBsEb81W8r6DhKLENGEApXykAn7kGNl7pBSiDEOhzbXJ6suIsq1lNONXDCR7 pH4OOm0Wxtm Oc

Therefore, the required point is               .

Question 11:

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.

Answer

It is known that the equation of the line passing through the points, (x1, y1, z1) and (x2,y2, z2), isCCB9syaVOVDtdWHq9hktju5rGWsagAUsUQQq 6d0eVjL txw56HB6go9rcjNps LAQp KkmKvthGdFgkTuZ0Q

The line passing through the points, (5, 1, 6) and (3, 4, 1), is given by,
wPEb5 PC3ywCFEzc1psTFat eFC2OCNKYVlEAWLO

Any point on the line is of the form (5 − 2k, 3k + 1, 6 −5k). Since the line passes through ZX-plane,

k76utW6pFjVMI5Tz9vHHH0F5gMYkbRdYGMjKu2tVoA5KOeQCLYownDAGNPhdXCg2sq3F2N tSEFlTL4odV9aHS iivxRzSSRIQwkta 33HvTAbmFQs0P8gwHb3Ag2QwMO6k fWA

YnQTcN3wxjiCWcOnPFXJYJvz2 fXNE9qhuR3bwl2Q6uI9r

Therefore, the required point is

Question 12:

Find the coordinates of the point where the line through (3, −4, −5) and (2, − 3, 1) crosses the plane 2x + y + z = 7.

Answer

It is known that the equation of the line through the points, (x1, y1, z1) and (x2, y2, z2), is
CCB9syaVOVDtdWHq9hktju5rGWsagAUsUQQq 6d0eVjL txw56HB6go9rcjNps LAQp KkmKvthGdFgkTuZ0Q

Since the line passes through the points, (3, −4, −5) and (2, −3, 1), its equation is given by,

r2YIuflNLaTFPLsasRCKsQrywELt i7ugcyuTDtk jNadaB9IUQ7IfqsoqAv 0an5iThOVrRcRdNdSKzf 0jsahPVuJbQ0Jt7fbyK aNCje0NuoD Nzs6bhvuIZ1xaH pHBMetg

Therefore, any point on the line is of the form (3 − k, k − 4, 6k − 5). This point lies on the plane, 2x + y + z = 7

∴ 2 (3 − k) + (k − 4) + (6k − 5) = 79gF6I6tgqTHFPLxDnr44osyDvmqMa7 i PbhAHuXGk1RNsI5nn3J2Zkw1HNlS qRMehg3YnDOCb5p8P0oBSz8xpsgL8wf

Hence, the coordinates of the required point are (3 − 2, 2 − 4, 6 × 2 − 5) i.e.,

(1, −2, 7).

Question 13:

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

Answer

The equation of the plane passing through the point (−1, 3, 2) is

a (x + 1) + b (y − 3) + c (z − 2) = 0 … (1)

where, a, b, c are the direction ratios of normal to the plane.

It is known that two planes, qcs6 rrlH04Nf5PFNPyVVz3AojyxyG3j9TO3sZ1Ge wnJ1T3xlr3gWLQn8l2rWigLE5ZiXoLjc5RtI TfpqQgDiFHdeY58ZkhzzFMxN2acjimV4YTwjwrB9 H5UhlPulkrsmOYs and AdrhPD5s2wPF wIg Kg5lTV Ba4aUNELootEIcndjxB14VlEzwD 5Dj6w2rL MJfTmaSC mV6dLgsld 6I5tVcEnAQSulkqO7srkePMvcVgboH5vH0h7oMp9p7vQVfb5WJV6VQo, are

perpendicular, if 2FXRAL3SqSkiyVrgd42nnCGZ6SDu6pUL6PjdLQbQf4WbPUgkcKbzYu9gIiE51icoQKYHIc0RJaPW018P qawt5PsXSQNrJSMRI0oBV1ggI6WWv1EQJaAHzbIJ3bAA kf8OOwf9A

Plane (1) is perpendicular to the plane, x + 2y + 3z = 5
0y40op2pnx2deEg2TD73gyk2CYpvsfKq8SzOMezUUzl sKyCNIzKdTArB5uX8SGXT5HbQsxsQin5VPJUEYR 9RaxjZLV5bhJyynkeW

Also, plane (1) is perpendicular to the plane, 3x + 3y + z = 0
bdmxLo8Yak tjINBlW9IDXiR1WRplJEirSeRi5EmmMYzmYjwxPZ 8XtLqHfUAb29ESx5 YHQurtYNF IK2aPTrwbmopL4a LQzEdCGvzb4j3 1X0UF2Rq7wyiCTGgSUuKnswIIA

From equations (2) and (3), we obtain
31enJwdTWM2GFbKDAPzrDlZuXcTH9jrHRKYqE4vHHZE iqaobF3gsoh68fN4h1rz45o82N8n 99awl5VGljdz0zLxd9L4pmI ru6YnKmqapVZkOGtN3bmyuXHZcMVwQpZ9OQd5U

Substituting the values of a, b, and c in equation (1), we obtain
LazC9AlORUITRMaacQieTW0GZKAulKPXkWhG gU10 P839F00LbmR8TpcG V0jvqusTYAu6GjJ57eD KJ3dh0rDNGiVPCnFrglpu6hohoG4Tl2ShBh0uQu3fWnZMdmHK3NwPH 4

This is the required equation of the plane.

Question 14:

If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane

, then find the value of p. 

Answer

The position vector through the point (1, 1,p)is KSuKcK94mmk oaNuG1zofjRDrdS6EwTLookNumMfP1WyV4hm4lvqzAunXXr1Q9tV34Jksx vPHWZj0PBXR0W

Similarly, the position vector through the point (−3, 0, 1) isxuROOaNtcgEUGzN4MDizgt835jMYHbknKyBkoPZYZWqGZQC4RsSXjtgS53D UzGXjh

The equation of the given plane is

It is known that the perpendicular distance between a point whose position vector is

arouekxxsdqgK bLNyGtlbKMdPQPETYH6B3f4XwXLnLJiyYI cgliStlW7xIvArXPwdSuNr26IZ2xvOvmGgE46 rrucecn rwypcwONMoGNnKkW8ejzSyskg EWEdDGmN8VPnZYand the plane, GO11fTnaJ9glREYVdD8t5Io2Ndtq meiWt2npNWTgXxtd57yd1Bg7C eVQ0Gq1FQ3UlpJFvcUu3EsZn6s5VzDy0JkQ5808naKis given by,

Here, yWmnGX3rEsVg20Sb078Rr4YaotjyB83 3uB 6IVP31L9sztJTWfSTnImJm9 6bVOMOJRQpC7zmnGn0iSgj WmR1iWhkwu4auAgHjXlg DE6yGohB u7m3ckDIkNqSMnYFAwjRT4 and d = -13

Therefore, the distance between the point (1, 1, p) and the given plane is
Rw8f5DeTWbiB3WW2eg4sNAeWzVW9iO8QrPST FAw6WAj ofmrEBiZnQBz5HHBFq7MBrSXSk8mwtItzZKZZ4v9koZmBNva6FJeHZLt6hY3p4ZbKcyiKDn8PGCWD8CnAu2ljfJFnQ

Similarly, the distance between the point (−3, 0, 1) and the given plane is
1g2UzIMHywsDqSY4G AJd85JsQzu0P5Tykjv6myBcjRdRczLDoztk6xy roJinfmtJeV2AbridLMk2HvA4zO5QiFBGwKiArEqSLRRmdXHvb8NBW 4zVmiTcju4Jq W8hVwelI 0

It is given that the distance between the required plane and the points, (1, 1, p) and (−3, 0, 1), is equal.

∴ D1 = D2
4QHVmvaM3KAwQycWVfftq8AR3NKwfxDU6SlVsFsLAkFQD4pueMx8y7M48

NU9CaoNANNHRXAuY 7JlFCW8uND6IpwW EJssr8fhJMB3vaL1aALdWBwfPSLmAK8bd4GOIT4hQOi52 SyFahpJk2F9zq6juBm I9OVfiheBRtZeNtWY8jTy1gosa12QoUzdU2o

Question 15:

Find the equation of the plane passing through the line of intersection of the planesand and parallel to x-axis. 

Answer

The given planes are
nmMTSIova

The equation of any plane passing through the line of intersection of these planes is

Its direction ratios are (2λ + 1), (3λ + 1), and (1 − λ).

The required plane is parallel to x-axis. Therefore, its normal is perpendicular to x-axis. The direction ratios of x-axis are 1, 0, and 0.

Substituting in equation (1), we obtain
e1H1vv0sW 5SlXSj5IdVMhkdVrvdGbk1l6HoBsfSOhKHN5lFDgcFFZrRyXNERLVea2Pke9rrqGr3TBi6JEO7LR IxyMTf5QA VvB VHE3Fc hzX fSkjAMM9huHt0D iLlBMoQ

Therefore, its Cartesian equation is y − 3z + 6 = 0 This is the equation of the required plane.

*Question 16:

If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.

Answer

The coordinates of the points, O and P, are (0,0,0) and (1,2,−3) respectively.

Therefore, the direction ratios of OP are (1−0)=1,(2−0)=2, and (−3−0)=−3 

It is known that the equation of the plane passing through the point (x1,y1,z1) is where, a, b, and c are the direction ratios of normal. Here, the direction ratios of normal are 1,2 and −3 and the point P is (1,2,−3).

Thus, the equation of the required plane is

*Question 17:

Find the equation of the plane which contains the line of intersection of the planes and which is perpendicular to the

Plane

Answer

The equations of the given planes are
QpIpGvntwI4v djg1rjG4TZ6 POYM2ka4wRNTAEPABXL1WIlrQu3nh7FvOSxo9vN3BwWmnAmYocTU1 Ur89Xcqu

The equation of the plane passing through the line intersection of the plane given in equation (1) and equation (2) is

1SFNabZaZr5 0mM8JmtvJDRXzmlRBl6gctHUNct6 gVcG6x1E35U6KQtwxzzPIuMJi3FreERhoahEMOvnKErKmfonrR41ZPPI16nvOIa4kkGnDy C l87hQoGGPnwBP9JMna mc

The plane in equation (3) is perpendicular to the plane, vPrhQU47Wp6IaA 7 0QfL4OclU0 oEYIgPVYhwRKl1D0WGCYAe2wnYp0HUhvN u2dUIF nHoqr2FItLMJKE5EqGICZI4wwBnFV ednRd1FLz5OadU9NtTNqwg lYxVnrmxU DZo

R0VqVFU 2Rp3I4LQwAFDkon0D6FBFxyIUi3rfEemLm8Q3MvQPDFOgdVIYX4YwTfPkegfpDz0OM3I LSZMHl H68zVPVgsVAhh8g5nuQrZ7TRfHPY1ZDdoppYSj6InPFgv VR9VDY

This is the vector equation of the required plane.

The Cartesian equation of this plane can be obtained by substitutinghN8hNBf iuOZf5Svi6wXGet2dQyWvSb7NE9mMLy5zELPnx8vBB244WdqB6PMFWDy1AF6nKqW ZqB5c1qAzOTJXt8WiDgN3lQfLYwu2BncNrFD hsgeRemKBB9eGOQkK5jycsR9o in equation (3).

*Question 18:

Find the distance of the point (−1, −5, −10), from the point of intersection of the line and the plane         and plane f8fLglOOucm4n91DAzOiCM8h68tx Rpuw C9 h4L6h4 2BzCZb2URcQjXeGSvudjEmVBVZ7ocuN4C0oZLD7cexGrbfZq8CJjvdUJwYrEC2jWkh6AN5OroP7mszjuuYHB KEOctvEZ p3wpWzu7uIj9TbcqR8 7jgRuaGBw

Answer

The equation of the given line is
szZov7PKdZLvRxVYhnI58W8ij5kpKClt42mWjCC i7h7LQ rEbyuNjZJjeU1JXEbfvElbwNn 10vrM

The equation of the given plane is
gtXHoqOW2IwVO 6QZdBAB6f2NgMISSqZY8 G3y j6EfNATpFEtbvWd8pXgPKiGXn0jfhYEn xs4bYpFspYPIWTM3C2UR5ntsXPkAv24DEwKXpu56D0BQwtQsjZnmABDwpRfl X0

Substituting the value of VUXSpyWcI50Oywsx2Fj0a3MI8QoasayR8HWuBsicKcmy 2WKVVzfrom equation (1) in equation (2), we obtain

dblEm jQXYvGQ3KJevZuou1S1EmDI6YDh7pSGwwhEww6kWmHGzEQXBzdTzTY mg0Hwp939jFm9zcCT3oQMdhbEr0B337r2lhqyaQopCqhBO39chNtT 3t9 bb9G2HIBjAMEWBio

Substituting this value in equation (1), we obtain the equation of the line as
OlUPcDDwggc3Aof42T1EMBVGiW9e3m

Thismeansthatthepositionvectorofthepointofintersectionofthelineandtheplane is OlUPcDDwggc3Aof42T1EMBVGiW9e3m

This shows that the point of intersection of the given line and plane is given by the coordinates, (2, −1, 2). The point is (−1, −5, −10).

The distance d between the points, (2, −1, 2) and (−1, −5, −10), is
z15J6mpKCmZGjcgHQzHA HghU8Bwb 4mNwwgWIdXGqyW87b lUPG32xsSF1bUUIhZDygxJ3wiTKIBaIm0t09ux2

*Question 19:

Find the vector equation of the line passing through (1, 2, 3) and parallel to the planesand

Answer

Let the required line be parallel to vector 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfA given by,
5DxG2YuFfDW5rwOZgi3iv2 Kw nQUujLg32jpJXlz4Qd0MVJgMjzPcXh1wuhUzzVLnZm1zrH4IGYWEyIqMoJj26t91Anr2iqeu7eHLEASofXA bik9lOPkVfKD2mwbFPPj9aOcY

The position vector of the point (1, 2, 3)is qwFNqHCtDnhciArRYQLxNq7w9 Xh3H0F LlClpT1y7eVUD1VHin4GK8k9njKceyB8moFaxcvsQ7J4S0FOm1iQsiJ152QE7ozA 9wO8lgsnclmG2cvXhdpplWOKbUH6gbK9XbeeI

The equation of line passing through (1,2,3) and parallel to 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfA is given by,
HfHgqtaHZJ9FJQj7gTNuxD4 OUNm3E6AuPrap GtnZhGDWVUz8qXb SActW8h6 46oYS8OWXoLyJQ4I5eCwJ6EjkHH86AavOsu5YyfnzDxCzRZ1

The equations of the given planes are

9lg7k l3D63KtKJ71pMEILH57 mOKPgG5agIm3qckFcE3PSGaj KAFrBDvRxTvhCReOZYYhxuowcfrZJIwTNibzngDmns 9nNlPi2vZASmd0wZPpqNdwkWXyP4rFUJrjq2UQX10

The line in equation (1) and plane in equation (2) are parallel. Therefore, the normal to the plane of equation (2) and the given line are perpendicular.OsDnL Ipk2hBGe5QNPb5D60yz13FatEI jwusYLuHm5jjiBYsxVH6liAm6s BAufNzi1t56Oqs8l jr3Yht7RJfsCrOecMoy3NnMmQ5R45Va2gKcRvue2jySKym5qwkq3Y1Gm5b1smptLPmGZQLl1ZpVuAQ6lFuAefHvl92FdR0COzltK29uB7EU3

M6P85P8e jJJKSKW5HAy

From equations (4) and (5), we obtain

Therefore, the direction ratios of 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAare −3, 5, and4.
0riEtsaXc6w axV2KNOJWOnVoptvOoc evVjudn3c AVg9XjsnHfGSzY6jcG63BTVhn1iyQYWGTtwZEDDFCTTwR8UzsOhkUefCcSmnpAnMw8FrKW8QqznEEG a6r38eOEJLmZM

Substituting the value of 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAin equation (1), we obtain
MZCmLhtxIjm3z2ca RiQImcGPsXYTfcngmZIEQ2FDTE5UimgUDkC81lKx43o5KwAKocaxh JHDEPZD VQyRG35HwlMifMHKPpYOHaGjPiEfrtMbiSnPYFjbFv7g0LMUPhCMGXNc

This is the equation of the required line.

*Question 20:

Find the vector equation of the line passing through the point (1, 2, − 4) and

perpendicular to the two lines:

Answer5DxG2YuFfDW5rwOZgi3iv2 Kw nQUujLg32jpJXlz4Qd0MVJgMjzPcXh1wuhUzzVLnZm1zrH4IGYWEyIqMoJj26t91Anr2iqeu7eHLEASofXA bik9lOPkVfKD2mwbFPPj9aOcY

Let the required line be parallel to the vector 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfA given by,

The position vector of the point (1, 2, − 4) is0jFE6weA3q

The equation of the line passing through (1, 2, −4) and parallel to vector 6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAis
THGTfoj5Tq5KqaGBWeYLAvnSIndl1XGNeP4pMUQuf6zDEntsdSmbtE49e2a siSaqODCWAl JpfhVPVyXj6r1rCqQr4af1QDvulLzSb7Nf1 VTLu21KUM4f i3guJoOEK2U2k74

The equations of the lines are
3sXx OtZhwv63RZ6Nddj8gkcjbdFwlRfjim DtFuVstfp1o4y2 9PwZ1lXgUU16H0i82B1dq5hbxIzL5jt S 9num15unglp6p2aykKamQ0sylTYWGFgjpwe9Ywi8TDr q3UiP4

Line (1) and line (2) are perpendicular to each other.
ZXaU4dKu0Wkqn6Pyyt7Eh uT8r6kTaQObe3vHW4w 3vQUUvS2DznsYhgYJBYDfLYu45VxgETBWEP5b YDqcQwqTqT4Kr2tJP d mmuGsvLvjvrGfbnkVwAOsTD7EL4XkvMjSWyU

Also, line (1) and line (3) are perpendicular to each other.
guNpRADMETcO

From equations (4) and (5), we obtain
HEWThDnluZAL 6tyQbgIqFs7JsR7Khs5tXsMzm3NpFMgyqjQiImuCRGqK92u10fX1r8yFQ1Zy9oHCmFmEwdSqzycpfMRZetuDLuLJEwWthYaX211jpSvRFq5OXroZh KNfvmL1s

∴Direction ratios of  6MOCGidtTzOmMCUWEWmSU76uwwL49J5w8L0mzI9RXUTqfHS3oZig3mPre 4cUlIN8S9Bo0 IvKUrhCpFa35F5rsqZSsAHVFeWP6zTkF5HLCO778VCbpEBcf1b1B4Hj4H7EKFfAare 2, 3, and6.
LQdPPw9ZcOnwPwvwygFxGeQAYLnsTvKaTQWwo9QUT5aVxd1SjvSaTgQ3nLlnGFvDSBkG1suHPl6b 7XER9r1HuonTmgSAa7lRJBT2y8soRqKPa6NhRpDt4WR29YItPgl2Fwny7Q

Substituting   sGGNxHpdpjE41Ftcvr6MtFuwMnWTyu4BQMPHquDwNfaTcq7sL0HLbin equation (1), we obtain
1ANMHeQm4pTLnj5vhJsmg6xO8yQsBvW9gDBHZSR DKAgKP9pApVVDx7Q44wqk00EaYcATk3Q ifnayudcMowb

This is the equation of the required line.

*Question 21:

Prove that if a plane has the intercepts a, b, c and is at a distance of P units from the origin, then
xWxdE38TOCcxWsXN1Gq4BeSKhdJ3Bp sHCsGc0sEpNrxoEki0ISYubtIcSVwAQFaaPiG xgAqecCLmCsGBk Kx LDtWkPpaqpsQaq4IksmbiJdQAqWmdJiU6EC5TjOrPKkciAOs

Answer

The equation of a plane having intercepts a, b, c with x, y, and z axes respectively is given by,IzV9 hJVnCw2ayNlv5mh1CVwQk5Le2l3p bOwsVUu937C93hKDqB416Cls1AFC3jyz0WojEZRuHaKmGCaNJUA03KAPq0okiqsQFuvU fAKETKi ANnEuvD

The distance (p) of the plane from the origin is given by,
m75HDiFnixGifWxM0fGLfeN 3tOwhsqQP9E6R8ydPMNkIPyjjxx4s75 rzrPaLzZFvuguviYZaEE4 DDmQOZoVZn0ssMciNjbtYlQUvmbo 1lmkqX5kizB1nku0YBJs1rroKC8

*Question 22:

Distance between the two planes: ymXUPAdMMyxV0cQzxwrvziIV HxZj3LRYpMiu5vbE7XhOFtyHslkHXNGhOT9 GVrElWyrW4GTtZAJAeFk 7mamVKgNvu2e41FddvDtkOhRPiBNJnSlZ7qVAluq8gGW0GVAsPgZgand Mn0Gt5jxxB2ARJWVJrVsFoaj Sczkzmvg6eeWiQ4 aDFkXCxe1o4IFKINHw1SpvlWexE43DzYdCONnRV64dEtMfryWQ0uwis 

(A)  2 units (B)   4 units (C)   8units (D)    

Answer

The equations of the planes are

Mn0Gt5jxxB2ARJWVJrVsFoaj Sczkzmvg6eeWiQ4 aDFkXCxe1o4IFKINHw1SpvlWexE43DzYdCONnRV64dEtMfryWQ0uw

9sK4DfSavR9K9Ga ZA1LpbF4GDZlHWkgoQOrMgZWSSnQMEe88TLTWts252qmZpvDYTKPuLBHfAPXhsp709UrcGV0Iab wqQcQI9leD74BygFuZzFvwRZoOWXZmRqe0QDuYptPqg

It can be seen that the given planes are parallel.

It is known that the distance between two parallel planes, ax + by + cz = d1 and ax + by+ cz = d2, is given by,
VawtlsroyR9kPAfY8HuFWP6gTHxJasKbOr1yQ047WM4ekpkVXj5Ak8qIqOqvjQOiSJkUCVqRxlEQUs2uW4TEQWynL5xemgFngJeG1JsSEopece6kvvo

Thus, the distance between the lines is units. Hence, the correct answer is D.

*Question 23:

The planes: 2x − y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular 3

(B) Parallel 

(C) intersect y-axis

(D) passes through

Answer

The equations of the planes are 2x − y + 4z = 5 … (1)

5x − 2.5y + 10z = 6 … (2)

It can be seen that,

7DlAWaz3WHgDCSnw0iZo4KnqSq4mGHwlvQsnPCgdZzYbS9wBk IT7 2n6w w8lS FnvpCZ3H1efsQVa8UYfFUQ4ZDCLjW uziUZ62yZIPjVz 693s3Dc4bO13OTUCI10PT5Fa8

Therefore, the given planes are parallel.

Hence, the correct answer is B.

Conclusion

Swastik Classes’ NCERT Solution for Class 12 Mathematics Chapter 11, “Three Dimensional Geometry,” is a comprehensive study material designed to help students understand three-dimensional geometry’s fundamental concepts and principles. The solutions provide step-by-step explanations and examples that help students develop a deeper understanding of the subject. The chapter covers a range of topics, including direction cosines and direction ratios of a line, the equation of a plane, angle between two lines and planes, and distance between a point and a plane. With the help of these solutions, students can improve their problem-solving skills and gain the confidence to tackle complex three-dimensional geometry problems. Swastik Classes’ NCERT solutions are designed in accordance with the latest CBSE syllabus, making them useful for students preparing for board exams or competitive exams like JEE and NEET. Overall, Swastik Classes’ NCERT Solution for Class 12 Mathematics Chapter 11 is an excellent resource for students who want to excel in mathematics and build a strong foundation in three-dimensional geometry.

You will learn about line direction cosines and ratios, cartesian and vector equations, coplanar and skew lines, and coplanar and skew lines.

Topics to study in Three Dimensional Geometry

Section No.Topics
11.1Introduction
11.2Direction Cosines and Direction Ratios of a Line
11.3Equation of a Line in Space
11.4Angle Between Two Lines
11.5Shortest Distance between Two Lines
11.6Plane
11.7Coplanarity of Two Lines
11.8Angle Between Two Planes
11.9Distance of a Point from a Plane
11.10Angle Between Two Line And Plane

Weightage of Math Class 12 Chapter 11 in CBSE Exam

ChaptersMarks
Three Dimensional Geometry8 Marks

Why opt for SWC?

One of the top IIT JEE coaching institutes is Swastik Classes. Shobhit Bhaiya and Alok Bhaiya, pioneering mentors of IIT JEE Coaching Classes, started Swastik Classes in Anand Vihar. Over the last 15 years, they have educated and sent over 2000+ students to IITs and 5000+ students to different famous universities such as BITS, NITs, DTU, and NSIT. When it comes to coaching programmes for IIT JEE, Swastik Classes is the top IIT JEE Coaching in Delhi, favoured by students from all over India.

Swastik Classes’ teachers have a solid academic background, having graduated from IIT with honours, and have extensive expertise in moulding students’ careers.

The study process in Swastik courses is separated between pre-class and post-class work, which is one of the most significant aspects. They are precisely created to improve the student’s mental ability and comprehension.

Why Swastik classes?

Videos on Three Dimensional Geometry

Also Access

NCERT Solution for Class XIIth Maths Chapter 11 Three Dimensional GeometryNCERT Solution for Class XIIth Maths Chapter 12 Linear Programming
NCERT Solution for Class XIIth Maths Chapter 13 ProbabilityNCERT Solution for Class XIIth Maths Chapter 2 Inverse Trigonometry
NCERT Solution for Class XIIth Maths Chapter 1 Relations and FunctionNCERT Solution for Class XIIth Maths Chapter 3 Matrices

Frequently Asked Questions on NCERT Solutions for Class 12 Math Chapter 11

Who is the father of three-dimensional geometry?

Euclid of Alexandria is father of Three Dimensional Geometry.

What is the use of three-dimensional geometry?

3D geometry is the study of forms in three-dimensional space using three coordinates: x-coordinate, y-coordinate, and z-coordinate. To discover the precise position of a point in a three-dimensional space, three parameters are necessary.

What is a three-dimensional figure without edges and vertices?

It is called a sphere. Sphere has no edges and Vertices.

How many 3-dimensional shapes are there?

The different types of three dimensional shapes are 8 and their names are cone, cylinder, cuboid, cube, sphere, rectangular prism, pyramid.

Are humans 3D or 4D?

Human beings are three-dimensional creatures. Objects in three-dimensional space have varying lengths, heights, and widths.

What dimension are we living in now?

The world we live in is referred to as the Three Dimensional World, or the 3-D World.

Is there a 7th dimension?

A 7-polytope is a polytope with seven dimensions. Regular polytopes, of which there are only three in seven dimensions: the 7-simplex, 7-cube, and 7-orthoplex, are the most studied.

swc google search e1651044504923

2021 Result Highlight of Swastik Classes

NCERT Solutions Class 12 Maths Chapters

  • Chapter 1 Relations and Function
  • Chapter 2 Inverse Trigonomtry
  • Chapter 3 Matrices
  • Chapter 4 Determinants
  • Chapter 5 Continuity and Differentiability
  • Chapter 6 Applications of Derivatives
  • Chapter 7 Integrals
  • Chapter 8 Application of Integrals
  • Chapter 9 Differential Equations
  • Chapter 10 Vector
  • Chapter 11 Three Dimensional Geometry
  • Chapter 12 Linear Programming
  • Chapter 13 Probability

Start Pop Up