Request a Free Counselling Session from our Expert Mentor

Table of Contents

Welcome to the NCERT Solutions for Class 12 Physics Chapter 4, provided by Swastik Classes. In this chapter, you will learn about Moving Charges and Magnetism.

You will study the concepts of magnetic fields, magnetic forces, and their interaction with moving charges. The chapter covers topics such as the magnetic field due to a current-carrying conductor, Ampere’s law, and the Biot-Savart law.

Additionally, the chapter discusses the force on a current-carrying conductor in a magnetic field, and the torque experienced by a current loop in a magnetic field. You will also learn about the motion of a charged particle in a magnetic field, the cyclotron, and the magnetic forces on current-carrying wires.

Our NCERT Solutions for Class 12 Physics Chapter 4 provide step-by-step explanations and solutions to all the questions in the textbook. With our solutions, you can easily grasp the concepts covered in the chapter and develop a deeper understanding of the subject.

NCERT Solutions for Class 12 Physics Chapter 4 Moving Charges and Magnetism – PDF Download

 

Answers of Physics NCERT solutions for class 12 Chapter 4 – Moving Charges and Magnetism

Page No 169:

Question 4.1:

A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field at the centre of the coil?

Answer:

Number of turns on the circular coil, n = 100

Radius of each turn, r = 8.0 cm = 0.08 m

Current flowing in the coil, I = 0.4 A

Magnitude of the magnetic field at the centre of the coil is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6916/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m6b7b008e.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6916/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space

= 4π × 10–7 T m A–1

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6916/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_5f0eabfe.gif

Hence, the magnitude of the magnetic field is 3.14 × 10–4 T.

Question 4.2:

A long straight wire carries a current of 35 A. What is the magnitude of the field at a point 20 cm from the wire?

Answer:

Current in the wire, I = 35 A

Distance of a point from the wire, r = 20 cm = 0.2 m

Magnitude of the magnetic field at this point is given as:

MYL0RerKRBb1jTh U6WW5D

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6917/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = 4π × 10–7 T m A–1

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6917/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m7c184788.gif

Hence, the magnitude of the magnetic field at a point 20 cm from the wire is 3.5 × 10–5 T.

Question 4.3:

A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of at a point 2.5 m east of the wire.

Answer:

Current in the wire, I = 50 A

A point is 2.5 m away from the East of the wire.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6919/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gif Magnitude of the distance of the point from the wire, r = 2.5 m.

Magnitude of the magnetic field at that point is given by the relation, 

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6919/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = 4π × 10–7 T m A–1

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6919/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_19d58ce4.gif

The point is located normal to the wire length at a distance of 2.5 m. The direction of the current in the wire is vertically downward. Hence, according to the Maxwell’s right hand thumb rule, the direction of the magnetic field at the given point is vertically upward.

Question 4.4:

A horizontal overhead power line carries a current of 90 A in east to west direction. What is the magnitude and direction of the magnetic field due to the current 1.5 m below the line?

Answer:

Current in the power line, I = 90 A

Point is located below the power line at distance, r = 1.5 m

Hence, magnetic field at that point is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6920/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_2d4d69b5.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6920/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = 4π × 10–7 T m A–1

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6920/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_30585bc4.gif

The current is flowing from East to West. The point is below the power line. Hence, according to Maxwell’s right hand thumb rule, the direction of the magnetic field is towards the South.

Question 4.5:

What is the magnitude of magnetic force per unit length on a wire carrying a current of 8 A and making an angle of 30º with the direction of a uniform magnetic field of 0.15 T?

Answer:

Current in the wire, = 8 A

Magnitude of the uniform magnetic field, B = 0.15 T

Angle between the wire and magnetic field, θ = 30°.

Magnetic force per unit length on the wire is given as:

f = BI sinθ

= 0.15 × 8 ×1 × sin30°

= 0.6 N m–1

Hence, the magnetic force per unit length on the wire is 0.6 N m–1.

Question 4.6:

A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T. What is the magnetic force on the wire?

Answer:

Length of the wire, l = 3 cm = 0.03 m

Current flowing in the wire, I = 10 A

Magnetic field, B = 0.27 T

Angle between the current and magnetic field, θ = 90°

Magnetic force exerted on the wire is given as:

F = BIlsinθ

= 0.27 × 10 × 0.03 sin90°

= 8.1 × 10–2 N

Hence, the magnetic force on the wire is 8.1 × 10–2 N. The direction of the force can be obtained from Fleming’s left hand rule.

Question 4.7:

Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.

Answer:

Current flowing in wire A, IA = 8.0 A

Current flowing in wire B, IB = 5.0 A

Distance between the two wires, r = 4.0 cm = 0.04 m

Length of a section of wire A, l = 10 cm = 0.1 m

Force exerted on length l due to the magnetic field is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6924/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_69e77a78.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6924/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = 4π × 10–7 T m A–1

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6924/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_1387fb9b.gif

The magnitude of force is 2 × 10–5 N. This is an attractive force normal to A towards B because the direction of the currents in the wires is the same.

Question 4.8:

A closely wound solenoid 80 cm long has 5 layers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm. If the current carried is 8.0 A, estimate the magnitude of inside the solenoid near its centre.

Answer:

Length of the solenoid, l = 80 cm = 0.8 m

There are five layers of windings of 400 turns each on the solenoid.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6925/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gifTotal number of turns on the solenoid, N = 5 × 400 = 2000

Diameter of the solenoid, D = 1.8 cm = 0.018 m

Current carried by the solenoid, I = 8.0 A

Magnitude of the magnetic field inside the solenoid near its centre is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6925/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m67390b91.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6925/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = 4π × 10–7 T m A–1

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6925/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_1787d6a1.gif

Hence, the magnitude of the magnetic field inside the solenoid near its centre is 2.512 × 10–2 T.

Question 4.9:

A square coil of side 10 cm consists of 20 turns and carries a current of 12 A. The coil is suspended vertically and the normal to the plane of the coil makes an angle of 30º with the direction of a uniform horizontal magnetic field of magnitude 0.80 T. What is the magnitude of torque experienced by the coil?

Answer:

Length of a side of the square coil, l = 10 cm = 0.1 m

Current flowing in the coil, I = 12 A

Number of turns on the coil, n = 20

Angle made by the plane of the coil with magnetic field, θ = 30°

Strength of magnetic field, B = 0.80 T

Magnitude of the magnetic torque experienced by the coil in the magnetic field is given by the relation,

τ = n BIA sinθ

Where,

A = Area of the square coil

  • l × l = 0.1 × 0.1 = 0.01 m2
  • ∴ τ = 20 × 0.8 × 12 × 0.01 × sin30°

= 0.96 N m

Hence, the magnitude of the torque experienced by the coil is 0.96 N m.

Question 4.10:

Two moving coil meters, M1 and M2 have the following particulars:

R1 = 10 Ω, N1 = 30,

A1 = 3.6 × 10–3 m2, B1 = 0.25 T

R2 = 14 Ω, N2 = 42,

A2 = 1.8 × 10–3 m2B2 = 0.50 T

(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage sensitivity of M2 and M1.

Answer:

For moving coil meter M1:

Resistance, R1 = 10 Ω

Number of turns, N1 = 30

Area of cross-section, A1 = 3.6 × 10–3 m2

Magnetic field strength, B1 = 0.25 T

Spring constant K1 = K

For moving coil meter M2:

Resistance, R2 = 14 Ω

Number of turns, N2 = 42

Area of cross-section, A2 = 1.8 × 10–3 m2

Magnetic field strength, B2 = 0.50 T

Spring constant, K2 = K

(a) Current sensitivity of M1 is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6928/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m751e7307.gif

And, current sensitivity of M2 is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6928/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m4a0590ee.gif

jgZYPT 6FKAJBV9brRcswmddVdGfNclqe8lamAKUafBz78DnBL6F8Vskc34EvU40 sxft5UeZ LNpP163k39tF87CxWdMa mLcFK Ratiohttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6928/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m4375fe30.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6928/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_3448da2f.gif

Hence, the ratio of current sensitivity of M2 to M1 is 1.4.

(b)  Voltage sensitivity for M2 is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6928/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m55a8386c.gif

And, voltage sensitivity for M1 is given as:

teubte0S8EJNNxhH2nEv5mjW18JvrX59Jitp8se5ZfsjBY8mdCNNDYfQ3mDLiH Pa732u7ckmYwDZI1jECq8BjhkAdBcEc

∴ Ratio

XDudCp9k7DEL5k8J72PmWOwUBwy9osFtiWB1m e iUJTcsEBbreiPRaP48A6DfY2 v30tj4ccoOZwgWA3XM0PNU pq ERDQpClq5AmsCFS0Dad3PC oansPtknFzPCI9mvfX1I
https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6928/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_7336d818.gif

Hence, the ratio of voltage sensitivity of M2 to M1 is 1.

Question 4.11:

In a chamber, a uniform magnetic field of 6.5 G (1 G = 10–4 T) is maintained. An electron is shot into the field with a speed of 4.8 × 106 m s–1 normal to the field. Explain why the path of the electron is a circle. Determine the radius of the circular orbit. (= 1.6 × 10–19 C, me= 9.1×10–31 kg)

Answer:

Magnetic field strength, B = 6.5 G = 6.5 × 10–4 T

Speed of the electron, v = 4.8 × 106 m/s

Charge on the electron, e = 1.6 × 10–19 C

Mass of the electron, me = 9.1 × 10–31 kg

Angle between the shot electron and magnetic field, θ = 90°

Magnetic force exerted on the electron in the magnetic field is given as:

F = evB sinθ

This force provides centripetal force to the moving electron. Hence, the electron starts moving in a circular path of radius r.

Hence, centripetal force exerted on the electron,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6930/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_1f382ded.gif

In equilibrium, the centripetal force exerted on the electron is equal to the magnetic force i.e.,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6930/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4d797e13.gif

Hence, the radius of the circular orbit of the electron is 4.2 cm.

Question 4.12:

In Exercise 4.11 obtain the frequency of revolution of the electron in its circular orbit. Does the answer depend on the speed of the electron? Explain.

Answer:

Magnetic field strength, B = 6.5 × 10−4 T

Charge of the electron, e = 1.6 × 10−19 C

Mass of the electron, me = 9.1 × 10−31 kg

Velocity of the electron, v = 4.8 × 106 m/s

Radius of the orbit, r = 4.2 cm = 0.042 m

Frequency of revolution of the electron = ν

Angular frequency of the electron = ω = 2πν

Velocity of the electron is related to the angular frequency as:

v = 

In the circular orbit, the magnetic force on the electron is balanced by the centripetal force. Hence, we can write:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6931/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_5f307ee.gif

This expression for frequency is independent of the speed of the electron.

On substituting the known values in this expression, we get the frequency as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6931/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_3b0b7ffe.gif

Hence, the frequency of the electron is around 18 MHz and is independent of the speed of the electron.

Question 4.13:

(a)  A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60º with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning.

(b)  Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

Answer:

(a)  Number of turns on the circular coil, n = 30

Radius of the coil, r = 8.0 cm = 0.08 m

Area of the coil https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6933/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m3af27cf8.gif

Current flowing in the coil, I = 6.0 A

Magnetic field strength, B = 1 T

Angle between the field lines and normal with the coil surface,

θ = 60°

The coil experiences a torque in the magnetic field. Hence, it turns. The counter torque applied to prevent the coil from turning is given by the relation,

τ = n IBA sinθ … (i)

= 30 × 6 × 1 × 0.0201 × sin60°

= 3.133 N m

(b)  It can be inferred from relation (i) that the magnitude of the applied torque is not dependent on the shape of the coil. It depends on the area of the coil. Hence, the answer would not change if the circular coil in the above case is replaced by a planar coil of some irregular shape that encloses the same area.

Page No 170:

Question 4.14:

Two concentric circular coils X and Y of radii 16 cm and 10 cm, respectively, lie in the same vertical plane containing the north to south direction. Coil X has 20 turns and carries a current of 16 A; coil Y has 25 turns and carries a current of 18 A. The sense of the current in X is anticlockwise, and clockwise in Y, for an observer looking at the coils facing west. Give the magnitude and direction of the net magnetic field due to the coils at their centre.

Answer:

Radius of coil X, r1 = 16 cm = 0.16 m

Radius of coil Y, r2 = 10 cm = 0.1 m

Number of turns of on coil X, n1 = 20

Number of turns of on coil Y, n2 = 25

Current in coil X, I1 = 16 A

Current in coil Y, I2 = 18 A

Magnetic field due to coil X at their centre is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6934/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m5db54452.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6934/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6934/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m7ae7f5fe.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6934/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_47fedc59.gif

Magnetic field due to coil Y at their centre is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6934/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_228752b7.gif

Hence, net magnetic field can be obtained as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6934/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m4b34c84a.gif

Question 4.15:

A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic

Answer:

Magnetic field strength, B = 100 G = 100 × 10−4 T

Number of turns per unit length, n = 1000 turns m−1

Current flowing in the coil, I = 15 A

Permeability of free space, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6936/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6936/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m7ae7f5fe.gif

Magnetic field is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6936/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_17cc1ebd.gif
https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6936/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_md25a31e.gif

If the length of the coil is taken as 50 cm, radius 4 cm, number of turns 400, and current 10 A, then these values are not unique for the given purpose. There is always a possibility of some adjustments with limits.

Question 4.16:

For a circular coil of radius and turns carrying current I, the magnitude of the magnetic field at a point on its axis at a distance from its centre is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m102d2e23.gif

(a)  Show that this reduces to the familiar result for field at the centre of the coil.

(b)  Consider two parallel co-axial circular coils of equal radius R, and number of turns N, carrying equal currents in the same direction, and separated by a distance R. Show that the field on the axis around the mid-point between the coils is uniform over a distance that is small as compared to R, and is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m2f06bad5.gif, approximately.

[Such an arrangement to produce a nearly uniform magnetic field over a small region is known as Helmholtz coils.]

Answer:

Radius of circular coil = R

Number of turns on the coil = N

Current in the coil = I

Magnetic field at a point on its axis at distance x is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m102d2e23.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space

(a)  If the magnetic field at the centre of the coil is considered, then x = 0.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m6e0742da.gif

This is the familiar result for magnetic field at the centre of the coil.

(b)  Radii of two parallel co-axial circular coils = R

Number of turns on each coil = N

Current in both coils = I

Distance between both the coils = R

Let us consider point Q at distance d from the centre.

Then, one coil is at a distance of  from point Q.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gifMagnetic field at point Q is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m60e98ed7.gif

Also, the other coil is at a distance of from point Q.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gifMagnetic field due to this coil is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_627bb1e.gif

Total magnetic field,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m791fb594.gif
https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6938/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m2c6ddc52.gif

Hence, it is proved that the field on the axis around the mid-point between the coils is uniform.

Question 4.17:

A toroid has a core (non-ferromagnetic) of inner radius 25 cm and outer radius 26 cm, around which 3500 turns of a wire are wound. If the current in the wire is 11 A, what is the magnetic field (a) outside the toroid, (b) inside the core of the toroid, and (c) in the empty space surrounded by the toroid.

Answer:

Inner radius of the toroid, r1 = 25 cm = 0.25 m

Outer radius of the toroid, r2 = 26 cm = 0.26 m

Number of turns on the coil, N = 3500

Current in the coil, I = 11 A

(a)  Magnetic field outside a toroid is zero. It is non-zero only inside the core of a toroid.

(b)  Magnetic field inside the core of a toroid is given by the relation,

lq93d5w1nW6vqJvv eRfajj5Ef4NmsTrW d5fQyCIf4s9B0DA1ImlaXSpOJW6yrFScMgxgemaj0xVy0vxzaUtdudSkJf tby9oP GENlcRSmiptWIkWC29tsoI6alvje2J OqM

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6941/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6941/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m7ae7f5fe.gif

l = length of toroid

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6941/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_5208eed0.gif

(c)  Magnetic field in the empty space surrounded by the toroid is zero.

Question 4.18:

Answer the following questions:

(a)  A magnetic field that varies in magnitude from point to point but has a constant direction (east to west) is set up in a chamber. A charged particle enters the chamber and travels undeflected along a straight path with constant speed. What can you say about the initial velocity of the particle?

(b)  A charged particle enters an environment of a strong and non-uniform magnetic field varying from point to point both in magnitude and direction, and comes out of it following a complicated trajectory. Would its final speed equal the initial speed if it suffered no collisions with the environment?

(c)  An electron travelling west to east enters a chamber having a uniform electrostatic field in north to south direction. Specify the direction in which a uniform magnetic field should be set up to prevent the electron from deflecting from its straight line path.

Answer:

(a)  The initial velocity of the particle is either parallel or anti-parallel to the magnetic field. Hence, it travels along a straight path without suffering any deflection in the field.

(b)  Yes, the final speed of the charged particle will be equal to its initial speed. This is because magnetic force can change the direction of velocity, but not its magnitude.

(c)  An electron travelling from West to East enters a chamber having a uniform electrostatic field in the North-South direction. This moving electron can remain undeflected if the electric force acting on it is equal and opposite of magnetic field. Magnetic force is directed towards the South. According to Fleming’s left hand rule, magnetic field should be applied in a vertically downward direction.

Page No 171:

Question 4.19:

An electron emitted by a heated cathode and accelerated through a potential difference of 2.0 kV, enters a region with uniform magnetic field of 0.15 T. Determine the trajectory of the electron if the field (a) is transverse to its initial velocity, (b) makes an angle of 30º with the initial velocity.

Answer:

Magnetic field strength, B = 0.15 T

Charge on the electron, e = 1.6 × 10−19 C

Mass of the electron, m = 9.1 × 10−31 kg

Potential difference, V = 2.0 kV = 2 × 103 V

Thus, kinetic energy of the electron = eV

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6946/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_7853d48b.gif

Where,

= velocity of the electron

(a)  Magnetic force on the electron provides the required centripetal force of the electron. Hence, the electron traces a circular path of radius r.

Magnetic force on the electron is given by the relation,

B ev

Centripetal force 

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6946/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_2f9ace85.gif

From equations (1) and (2), we get

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6946/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_61dbcf00.gif

Hence, the electron has a circular trajectory of radius 1.0 mm normal to the magnetic field.

(b)  When the field makes an angle θ of 30° with initial velocity, the initial velocity will be,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6946/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_3efa644d.gif

From equation (2), we can write the expression for new radius as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6946/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_5ee3da9b.gif

Hence, the electron has a helical trajectory of radius 0.5 mm along the magnetic field direction.

Question 4.20:

A magnetic field set up using Helmholtz coils (described in Exercise 4.16) is uniform in a small region and has a magnitude of 0.75 T. In the same region, a uniform electrostatic field is maintained in a direction normal to the common axis of the coils. A narrow beam of (single species) charged particles all accelerated through 15 kV enters this region in a direction perpendicular to both the axis of the coils and the electrostatic field. If the beam remains undeflected when the electrostatic field is 9.0 × 105 V m−1, make a simple guess as to what the beam contains. Why is the answer not unique?

Answer:

Magnetic field, B = 0.75 T

Accelerating voltage, V = 15 kV = 15 × 103 V

Electrostatic field, E = 9 × 105 V m−1

Mass of the electron = m

Charge of the electron = e

Velocity of the electron = v

Kinetic energy of the electron = eV

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6948/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_74849e29.gif
https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6948/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_7b13c056.gif
https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6948/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m7562cca2.gif

Since the particle remains undeflected by electric and magnetic fields, we can infer that the force on the charged particle due to electric field is balancing the force on the charged particle due to magnetic field.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6948/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_59523fc6.gif

Putting equation (2) in equation (1), we get

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6948/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_7b3ca188.gif

This value of specific charge e/m is equal to the value of deuteron or deuterium ions. This is not a unique answer. Other possible answers are He++, Li++, etc.

Question 4.21:

A straight horizontal conducting rod of length 0.45 m and mass 60 g is suspended by two vertical wires at its ends. A current of 5.0 A is set up in the rod through the wires.

(a)  What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?

(b)  What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before? (Ignore the mass of the wires.) g = 9.8 m s−2.

Answer:

Length of the rod, l = 0.45 m

Mass suspended by the wires, m = 60 g = 60 × 10−3 kg

Acceleration due to gravity, g = 9.8 m/s2

Current in the rod flowing through the wire, I = 5 A

(a)  Magnetic field (B) is equal and opposite to the weight of the wire i.e.,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6950/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m47be0f1d.gif

A horizontal magnetic field of 0.26 T normal to the length of the conductor should be set up in order to get zero tension in the wire. The magnetic field should be such that Fleming’s left hand rule gives an upward magnetic force.

(b)  If the direction of the current is revered, then the force due to magnetic field and the weight of the wire acts in a vertically downward direction.

∴Total tension in the wire = BIl + mg

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6950/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_402fa35c.gif

Question 4.22:

The wires which connect the battery of an automobile to its starting motor carry a current of 300 A (for a short time). What is the force per unit length between the wires if they are 70 cm long and 1.5 cm apart? Is the force attractive or repulsive?

Answer:

Current in both wires, I = 300 A

Distance between the wires, = 1.5 cm = 0.015 m

Length of the two wires, l = 70 cm = 0.7 m

Force between the two wires is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6952/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_ac07e0a.gif

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6952/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif = Permeability of free space = https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6952/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m7ae7f5fe.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6952/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m3d3698ad.gif

Since the direction of the current in the wires is opposite, a repulsive force exists between them.

Question 4.23:

A uniform magnetic field of 1.5 T exists in a cylindrical region of radius10.0 cm, its direction parallel to the axis along east to west. A wire carrying current of 7.0 A in the north to south direction passes through this region. What is the magnitude and direction of the force on the wire if,

(a)  the wire intersects the axis,

(b)  the wire is turned from N-S to northeast-northwest direction,

(c)  the wire in the N-S direction is lowered from the axis by a distance of 6.0 cm?

Answer:

Magnetic field strength, B = 1.5 T

Radius of the cylindrical region, r = 10 cm = 0.1 m

Current in the wire passing through the cylindrical region, I = 7 A

(a)  If the wire intersects the axis, then the length of the wire is the diameter of the cylindrical region.

Thus, l = 2r = 0.2 m

Angle between magnetic field and current, θ = 90°

Magnetic force acting on the wire is given by the relation,

F = BIl sin θ

= 1.5 × 7 × 0.2 × sin 90°

= 2.1 N

Hence, a force of 2.1 N acts on the wire in a vertically downward direction.

(b)  New length of the wire after turning it to the Northeast-Northwest direction can be given as: :

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6953/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_af9f009.gif

Angle between magnetic field and current, θ = 45°

Force on the wire,

F = BIl1 sin θ

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6953/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_77d34023.gif

Hence, a force of 2.1 N acts vertically downward on the wire. This is independent of angle θ because l sinθ is fixed.

(c)  The wire is lowered from the axis by distance, d = 6.0 cm

Suppose wire is passing perpendicularly to the axis of cylindrical magnetic field then lowering 6 cm means displacing the wire 6 cm from its initial position towards to end of cross sectional area.

https://img-nm.mnimgs.com/img/study_content/content_ck_images/images/Untitled%20drawing(1).png

Thus the length of wire in magnetic field will be 16 cm as AB= =2x =16 cm

Now the force,

iLB sin90°  as the wire will be perpendicular to the magnetic field.

F= 7 × 0.16 × 1.5 =1.68 N

The direction will be given by right hand curl rule or screw rule i.e. vertically downwards.

Question 4.24:

A uniform magnetic field of 3000 G is established along the positive z-direction. A rectangular loop of sides 10 cm and 5 cm carries a current of 12 A. What is the torque on the loop in the different cases shown in Fig. 4.28? What is the force on each case? Which case corresponds to stable equilibrium?

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m2f84f097.jpg

Answer:

Magnetic field strength, B = 3000 G = 3000 × 10−4 T = 0.3 T

Length of the rectangular loop, l = 10 cm

Width of the rectangular loop, b = 5 cm

Area of the loop,

A = l × b = 10 × 5 = 50 cm= 50 × 10−4 m2

Current in the loop, I = 12 A

Now, taking the anti-clockwise direction of the current as positive and vise-versa:

(a)  Torque, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m5bf18160.gif

From the given figure, it can be observed that is normal to the yz plane and B is directed along the z-axis.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_7befbd69.gif

The torque is https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_23631a18.gif N m along the negative y-direction. The force on the loop is zero because the angle between A and B is zero.

(b)  This case is similar to case (a). Hence, the answer is the same as (a).

(c)  Torque https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m2503405f.gif

From the given figure, it can be observed that is normal to the xz plane and B is directed along the z-axis.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m21d9bd48.gif

The torque is https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_23631a18.gif N m along the negative direction and the force is zero.

(d)  Magnitude of torque is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_49a5d52f.gif

Torque is https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_23631a18.gif N m at an angle of 240° with positive direction. The force is zero.

(e)  Torque https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m2503405f.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m5813d7ef.gif

Hence, the torque is zero. The force is also zero.

(f)  Torque https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m2503405f.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m5813d7ef.gif

Hence, the torque is zero. The force is also zero.

In case (e), the direction of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4923261f.gifand https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m4b0e914a.gifis the same and the angle between them is zero. If displaced, they come back to an equilibrium. Hence, its equilibrium is stable.

Whereas, in case (f), the direction of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4923261f.gifand https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6957/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m4b0e914a.gifis opposite. The angle between them is 180°. If disturbed, it does not come back to its original position. Hence, its equilibrium is unstable.

Page No 172:

Question 4.25:

A circular coil of 20 turns and radius 10 cm is placed in a uniform magnetic field of 0.10 T normal to the plane of the coil. If the current in the coil is 5.0 A, what is the

(a)  total torque on the coil,

(b) total force on the coil,

(c)  average force on each electron in the coil due to the magnetic field?

(The coil is made of copper wire of cross-sectional area 10−5 m2, and the free electron density in copper is given to be about 1029 m−3.)

Answer:

Number of turns on the circular coil, n = 20

Radius of the coil, r = 10 cm = 0.1 m

Magnetic field strength, B = 0.10 T

Current in the coil, I = 5.0 A

(a)  The total torque on the coil is zero because the field is uniform.

(b) The total force on the coil is zero because the field is uniform.

(c) Cross-sectional area of copper coil, A = 10−5 m2

Number of free electrons per cubic meter in copper, N = 1029 /m3

Charge on the electron, e = 1.6 × 10−19 C

Magnetic force, F = Bevd

Where,

vd = Drift velocity of electrons

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6960/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_82ea758.gif

Hence, the average force on each electron is https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6960/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_7f2c5963.gif

Question 4.26:

A solenoid 60 cm long and of radius 4.0 cm has 3 layers of windings of 300 turns each. A 2.0 cm long wire of mass 2.5 g lies inside the solenoid (near its centre) normal to its axis; both the wire and the axis of the solenoid are in the horizontal plane. The wire is connected through two leads parallel to the axis of the solenoid to an external battery which supplies a current of 6.0 A in the wire. What value of current (with appropriate sense of circulation) in the windings of the solenoid can support the weight of the wire? = 9.8 m s−2

Answer:

Length of the solenoid, L = 60 cm = 0.6 m

Radius of the solenoid, r = 4.0 cm = 0.04 m

It is given that there are 3 layers of windings of 300 turns each.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6962/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gif Total number of turns, n = 3 × 300 = 900

Length of the wire, l = 2 cm = 0.02 m

Mass of the wire, m = 2.5 g = 2.5 × 10−3 kg

Current flowing through the wire, i = 6 A

Acceleration due to gravity, g = 9.8 m/s2

Magnetic field produced inside the solenoid,

Where,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6962/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m144f80ba.gif= Permeability of free space

= Current flowing through the windings of the solenoid

Magnetic force is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6962/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_627f7f96.gif

Also, the force on the wire is equal to the weight of the wire.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6962/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m6e251512.gif

Hence, the current flowing through the solenoid is 108 A.

Question 4.27:

A galvanometer coil has a resistance of 12 Ω and the metre shows full scale deflection for a current of 3 mA. How will you convert the metre into a voltmeter of range 0 to 18 V?

Answer:

Resistance of the galvanometer coil, G = 12 Ω

Current for which there is full scale deflection, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6965/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_746e7c7d.gif = 3 mA = 3 × 10−3 A

Range of the voltmeter is 0, which needs to be converted to 18 V.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6965/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gifV = 18 V

Let a resistor of resistance R be connected in series with the galvanometer to convert it into a voltmeter. This resistance is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6965/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m6b4a645a.gif

Hence, a resistor of resistance https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6965/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m5ad2267f.gif is to be connected in series with the galvanometer.

Question 4.28:

A galvanometer coil has a resistance of 15 Ω and the metre shows full scale deflection for a current of 4 mA. How will you convert the metre into an ammeter of range 0 to 6 A?

Answer:

Resistance of the galvanometer coil, G = 15 Ω

Current for which the galvanometer shows full scale deflection,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6967/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_746e7c7d.gif = 4 mA = 4 × 10−3 A

Range of the ammeter is 0, which needs to be converted to 6 A.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6967/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4dd19828.gifCurrent, I = 6 A

A shunt resistor of resistance S is to be connected in parallel with the galvanometer to convert it into an ammeter. The value of is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6967/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_4fb1723.gif

Hence, a https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/248/6967/NS_17-11-2008_Sravana_12_Physics_4_28_NRJ_SG_html_m65d7b872.gif shunt resistor is to be connected in parallel with the galvanometer.

 

NCERT Solution Physics Class 12 Chapter 4 – Moving Charges And Magnetic Effect

Electricity and magnetism have both been studied for over 2000 years. In the summer of 1820, Danish physicist Hans Christian Oersted realized that electricity and magnetism are linked during a lecture-demonstration. He discovered that a current flowing through a straight wire generated a substantial deviation in the needle of a nearby magnetic compass. This was something he looked into. He found that when the current is increased or the needle is brought closer to the wire, the deflection rises. Iron filings scattered around the wire form concentric circles with the wire at their center. Moving charges or currents, according to Oersted, created a magnetic field in the surrounding space. Moving charges and their magnetic effect are discussed in NCERT Class 12 Physics Chapter 4.

Topics to study in NCERT Class 12 Physics Chapter 4 – Moving Charges and Magnetism

Section Number Topic
4.1 Introduction
4.2 Magnetic Force
4.2.1 Sources And Fields
4.2.2 Magnetic Field, Lorentz Force
4.2.3 Magnetic Force On A current-carrying Conductor
4.3 Motion In A Magnetic Field
4.4 Motion In Combined Electric And Magnetic Fields
4.4.1 Velocity Selector
4.4.2 Cyclotron
4.5 Magnetic Field Due To A Current Element, Biot-savart Law
4.6 Magnetic Field On The Axis Of A Circular Current Loop
4.7 Ampere’s Circuital Law
4.8 The Solenoid And The Toroid
4.8.1 The Solenoid
4.8.2 The Toroid
4.9 Force Between Two Parallel Currents, The Ampere
4.10 Torque On Current Loop, Magnetic Dipole
4.10.1 Torque On A Rectangular Current Loop In A Uniform Magnetic Field
4.10.2 Circular Current Loop As A Magnetic Dipole
4.10.3 The Magnetic Dipole Moment Of A Revolving Electron
4.11 The Moving Coil Galvanometer

 

Why Students Prefer SWC’s NCERT Solutions For Class 12 Physics?

At SWC, students directly learn from IITians and experienced faculties. We provide quality study materials to prepare and follow a LEAP model. We teach not only for exams but for lifelong applications.

Why Swastik classes?

 

Related links to NCERT Solutions Class 12 Physics

NCERT Solution for Class XIIth Physics Chapter 3 Current Electricity

NCERT Solution for Class XIIth Physics Chapter 2 Electrostatic Potential and Capacitance

NCERT Solution for Class XIIth Physics Chapter 7 Alternating Current

NCERT Solution for Class XIIth Physics Chapter 1 Electric Charges and Fields

NCERT Solution for Class XIIth Physics Chapter 6 Electromagnetic Induction

NCERT Solution for Class XIIth Physics Chapter 5 Magnetism and Matter

FAQs on NCERT Class 12 Physics Chapter 4 

Who gave the corkscrew rule?

James Clerk Maxwell.

What’s the left-hand rule for magnetism?

Fleming’s left-hand rule states that if we arrange the forefinger, the middle finger, and the thumb of the left hand to be mutually perpendicular to each other, then if the thumb points in the direction of the magnetic force and the forefinger in the direction of the magnetic field, the middle finger shows the direction of the induced current.

 

What is the direction of torque?

Torque is a vector quantity. Its direction is perpendicular to both the radius of the axis of rotation and the force applied for rotation. It can be easily found using the right-hand rule.

Does displacement have a direction?

Yes. Displacement is a vector quantity. This means that it must have both magnitude and direction.

Is work a dot product?

Yes, work is the dot product of Force and Displacement.

 

Summary of Physics Class 12 Chapter 4

  1. Lorentz force is defined as the total force on a charge q moving with velocity v under the influence of magnetic field B and electric field E. 

F = q (v × B + E)

 

  1. A straight conductor of length l and carrying a steady current I

experiences a force F in a uniform external magnetic field B,

F = I l × B

where|l| = l and the direction of l is given by the direction of the current.

 

  1. In a uniform magnetic field B, a charge q executes a circular orbit in

a plane normal to B. Its frequency of uniform circular motion is called

cyclotron frequency.

 

  1. A moving coil galvanometer can be converted into an ammeter by

introducing a shunt resistance rs, of small value in parallel. It can be

converted into a voltmeter by introducing a resistance of a large value

in series.

Conclusion

 

The NCERT Solutions for Class 12 Physics Chapter 4 provided by Swastik Classes offer a comprehensive understanding of the concepts of Moving Charges and Magnetism. The solutions provide step-by-step explanations of all the questions given in the textbook, making it easier for students to grasp the concepts and solve the problems with ease.

Our solutions cover all the important topics of the chapter, such as magnetic fields, magnetic forces, Ampere’s law, Biot-Savart law, force on a current-carrying conductor, torque on a current loop, motion of charged particles in a magnetic field, cyclotron, and magnetic forces on current-carrying wires.

Furthermore, the solutions provide practical applications of these concepts in various fields, such as particle accelerators, electric motors, and generators. With these solutions, students can develop a better understanding of the subject and excel in their exams.

Overall, the NCERT Solutions for Class 12 Physics Chapter 4 are designed to help students gain a deeper understanding of the concepts covered in the chapter and provide them with the necessary tools to solve complex problems. With these solutions, students can improve their problem-solving skills and achieve academic success.

 

swc google search e1651044504923

2021 Result Highlight of Swastik Classes

NCERT Solutions Class 12 Maths Chapters